
Interactive Geometric Algorithm Visualization in a
Browser∗

Lynn Asselin1, Kirk P. Gardner2, and Donald R. Sheehy3

1 University of Connecticut
lynn.asselin@uconn.edu

2 University of Connecticut
kirk.gardner@uconn.edu

3 University of Connecticut
don.r.sheehy@gmail.com

Abstract
We present an online, interactive tool for writing and presenting interactive geometry demos
suitable for classroom demonstrations. Code for the demonstrations is written in JavaScript
using p5.js, a JavaScript library based on Processing.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems—Geometrical
problems and computations.

Keywords and phrases Computational Geometry, Processing, JavaScript, Visualisation, Incre-
mental Algorithms

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Motivation

At CG Week 2013 in Rio de Janeiro, Suresh Venkatasubramanian presented at the Workshop
on Geometric Computing Challenges with a strong plea for more and better tools for
producing interactive pedagogical geometry demos. In his abstract he describes the situation
quite clearly:

The early days of the Web were a goldmine for geometric algorithm demos. The
visual and interactive nature of geometric algorithms, coupled with the proliferation
of lightweight Java applets, made the HTML canvas a fantastic portable framework
for teaching and demonstrations.
Fast forward to 2013. We have a blizzard of Javascript frameworks, sophisticated
HTML5 based in-browser animations, and a host of new platforms on which to demo
algorithms. We also have a mature geometric computing platform in the form of
CGAL. But we no longer have geometric demos that work well (or at all in many
cases).

Here in 2016, the situation is not much different. In this paper, we describe a tool that
fills this gap. It is informed by experience collected from teaching an introductory course on
Computational Geometry at the University of Connecticut in which students produced such
demos as course projects. In most cases, the challenges of dealing with interaction and
visualization dominated the geometric ideas.

∗ This work was partially supported by the National Science Foundation under grant CCF-1525978.

© Lynn Asselin, Kirk P. Gardner, and Donald R. Sheehy;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Interactive Geometric Algorithm Visualization

Our interactive geometric algorithm visualizer is designed with the following goals.
1. It should be possible to visualize a geometric algorithm without writing any explicit

visualization code.
2. It should be possible to produce an interactive (incremental) demonstration without

writing any explicit code to deal with interaction.

Satisfying these two goals implies that all of the visualization and interaction code is
abstracted away from the user, who is presented with a simple editor and a canvas. When
more complex interaction or visualization is desired, access to these elements is available.

This project in active development, and the source code is available at https://github.
com/compugeom/compugeom.github.io. A live, interactive sandbox is available at http:
//compugeom.github.io.

2 Geometric Primitives

Drawable classes take the form of primitives as well as data structures, and can be instantiated
as geometric objects complete with visualization specifications, as well as any support
functions needed to concisely represent the underlying mathematics. These provide a
foundation for other data structures and algorithms to be built upon, as well as a natural
way to abstract away visualization. The main objects currently provided are:

Vertices, Edges and Faces - Objects which encapsulate p5.js primitives such as ellipse
and line that can be instantiated, visualized, and modified.
Point sets - In particular, we allow for dynamic point sets which are generated by user
input.
Polygons - Our polygon implementation provides a cyclic Edge list data structure, and
allows for easy indexing into the vertices, automatically wrapping indices around using
modular arithmetic.
Planar Straight Line Graphs - A simple half-edge data structure is used to store and
traverse the Edges of an embedded planar graph.

As our objective is to construct a means for geometers, students and developers to develop
and visualize algorithms in a way that mimics the elegance of the underlying mathematics we
adopt a hierarchical paradigm in order to minimize redundancy within the framework. These
objects therefore make extensive, but not unnecessary use of lower dimensional primitives
and data structures, with visualizations and functionality building naturally off of their
component parts. In addition to these, we provide standard linear predicates such as triangle
orientation tests (i.e. CCW tests), currently implemented as utility functions within a number
of classes.

3 Technical Details

Our goal in this project is not only to build a web-based pedagogical tool, but also to provide
a comprehensive and intuitive computational geometry library that allows students, educators
and developers to quickly and easily implement well known geometric procedures. The p5.js
library provides a pure JavaScript implementation of the Processing software sketchbook: an
API for rendering graphics such as shapes, lines and ellipses in 2 and 3D. These objects are
rendered by placing them in an event loop, however there are no geometric objects provided
by the p5.js library. In order to implement geometric algorithms in p5.js/Processing
the provided visualization primitives must therefore be wrapped by classes that encapsulate

https://github.com/compugeom/compugeom.github.io
https://github.com/compugeom/compugeom.github.io
http://compugeom.github.io
http://compugeom.github.io


L. Asselin, K. P. Gardner, and D. R. Sheehy 3

geometric primitives. These primitives can then be packaged alongside linear predicates and
geometric data structures in order to provide data abstraction and visualization

The first step in constructing such a framework is therefore to handle the instantiation
and visualization of drawable objects. This can be accomplished by wrapping the event loop
in a data structure that maintains the order of execution and animation of our algorithm
visualizer. Thus the CG_Environment class serves to abstract away as much of the embedded
event loop as possible without restricting the user’s access to the p5.js library. We have also
created geometric primitives as objects, each containing relevant (and natural) properties and
functions, as well as the ability to draw themselves when instantiated by a CG_Environment
object. This is achieved by keeping matrix of objects CG_Environment.things sorted by
dimension that are to be drawn in the event loop. Objects can also be used strictly as data
structures without visualization by instantiating them directly from the library, as in Figure 1

4 Example: Incremental Convex Hull

As a proof of concept, we give an example of a incremental algorithm for computing the
convex hull of a set of points. Usually, the term incremental algorithm means that the input
is processed one element at a time. The primary invariant maintained after processing each
element is that the state of the algorithm is a correct output if the current element were the
last one. That is, the correctness condition stands in as a loop invariant. An alternative view
is that the input arrives online and as each new input arrives, we update the output. This is
the more interactive version and it’s the perspective we take.

The CG_DynamicPointSet class defines a point set for which new points are generated
with a mouse click on the canvas. Upon user input the update function is called, passing
the new point as a parameter. Thus, to write a program, one need only instantiate a new
DynamicPointSet, a new Polygon (for the output), and write the update function. Some
example code is given below.

demo.P = demo.DynamicPointSet();
var H = demo.Polygon();
// dynamically compute the convex hull of the point set
demo.P.updateFunction = function(q) {

if (H.VertexList.length < 2) {
H.newVertex(q);
return;

}
var left = -1, right = -1;
for (var i = 0; i < H.VertexList.length; i++) {

if (H.orient(i, i+1, q) && H.orient(i, i-1, q)){ right = i; }
if (H.orient(i+1, i, q) && H.orient(i-1, i, q)){ left = i; }

}
// if q is outside the hull remove vertices and insert q
if (left != -1 && right != -1) H.replace(q, left, right);

};

The demo object is an instance of the CG_Environment class, and is used here to instantiate
a DynamicPointSet to handle user input and a Polygon, the convex hull. The rest of the
code is intended to be representative of the algorithm specification by making use of predicates
and functions that are natural to the data types in question.



4 Interactive Geometric Algorithm Visualization

Figure 1 An augmented convex hull algorithm that visualizes the edited region of the polygon by
constructing a face, var f = new CG_Face(new CG_Polygon([H.v(left), q, H.v(right)])), and
setting it as the only 2D object that is to be draw, demo.things[2] = [f].

Figure 1 illustrates a simple augmentation of the convex hull algorithm that makes
use of the CG_Face class, taken directly from the web-page. In contrast to the fact-
ory function provided by the CG_Environment class, here we directly access the matrix,
CG_Environment.things, of drawn objects in order to ensure we only have one 2D object:
the face that represents the most recent change in the hull.

5 Future Work

There are many new features in active development. Among the most immediately useful are
methods for visualizing geometric predicates. The main appeal of this project is the ability
to quickly and easily implement and visualize geometric algorithms. Predicate visualizations
would allow users to not only implement and view the algorithm’s output, but also step
through them visually. Our goal is that this project will be beneficial to educators and
students alike, allowing a clear interactive visual aid to procedures that would otherwise be
presented in a textbook or lecture slide.

In addition to predicate visualization we are in the process of integrating support for 3D
algorithms and visualizations. By using the perspective and camera controls of p5.js we
hope to provide an intuitive and painless interface for 3D input processing and visualization.
We are also experimenting with other methods for stepping through code for non-incremental
algorithms.


	Motivation
	Geometric Primitives
	Technical Details
	Example: Incremental Convex Hull
	Future Work

