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Abstract

Often, high dimensional data lie close to a
low-dimensional submanifold and it is of in-
terest to understand the geometry of these
submanifolds. The homology groups of a
manifold are important topological invariants
that provide an algebraic summary of the
manifold. These groups contain rich topo-
logical information, for instance, about the
connected components, holes, tunnels and
sometimes the dimension of the manifold. In
this paper, we consider the statistical prob-
lem of estimating the homology of a mani-
fold from noisy samples under several differ-
ent noise models. We derive upper and lower
bounds on the minimax risk for this problem.
Our upper bounds are based on estimators
which are constructed from a union of balls of
appropriate radius around carefully selected
points. In each case we establish complemen-
tary lower bounds using Le Cam’s lemma.

1 Introduction

Let M be a d-dimensional manifold embedded in RD
where d ≤ D. The homology groups H(M) of M [11]
is an algebraic summary of the properties of M . The
homology groups of a manifold describe its topologi-
cal features such as its connected components, holes,
tunnels, etc.

In machine learning, there is much focus on cluster-
ing. However, the clusters are only the zeroth order
homology and hence only scratch the surface of the
topological information in a dataset. Extracting in-
formation beyond clustering is known as topological
data analysis. It is worth emphasizing that the ho-
mology groups are topological invariants of a manifold
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that can be efficiently computed [4, 5]. Examples of
applications of homology inference have been growing
rapidly in the last few years. Homology inference has
found application in medical imaging and neuroscience
[3, 21], sensor networks [6, 20], landmark-based shape
data analyses [10], proteomics [19], microarray analysis
[7] and cellular biology [14]. The books by [8, 18, 23]
contain various case studies in applications in fields
ranging from computational biology to geophysics.

In this paper we study the problem of estimating
the homology of a manifold M from a noisy sample
Y1, . . . , Yn. Specifically, we bound the minimax risk

Rn ≡ inf
Ĥ

sup
Q∈Q

Qn
(
Ĥ 6= H(M)

)
(1)

where the infimum is over all estimators Ĥ of the ho-
mology of M and the supremum is over appropriately
defined classes of distributions Q for Y . Note that
0 ≤ Rn ≤ 1 with Rn = 1 meaning that the problem
is hopeless. Bounding the minimax risk is equivalent
to bounding the sample complexity of the best possible
estimator, defined by n(ε) = min

{
n : Rn ≤ ε

}
where

0 < ε < 1.

1.1 Related Work

Other work on statistical homology includes that of
Chazal et. al. [2] who show under certain conditions
the homology estimate of a manifold from a sample
is stable under noise perturbation that is small in a
Wasserstein sense. Kahle [13] studies the homology of
random geometric graphs and proves many threshold
and central limit theorems for their homology. Adler
et. al. [1] study the homology induced by the level
sets of certain Gaussian random fields. There is also a
large literature on manifold denoising that focuses on
aspects of the manifold not related to homology; see
for instance [12] and references therein.

Our upper bounds mainly generalize those in the work
of Niyogi, Smale and Weinberger (henceforth NSW)
[16, 17]. They establish a general result showing that
when all the samples are dense in a thin region sur-
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rounding the manifold, a union of appropriately sized
balls around the samples can be used to construct an
accurate estimate of the homology with high probabil-
ity. Under a variety of different noise models we will
show that even when all the samples are not close to
the manifold it is possible to “clean” the samples (es-
sentially removing those in regions of low-density) and
be left with samples which are dense in a thin region
around the manifold.

In the case of additive noise with general noise dis-
tributions however, we cannot expect too many sam-
ples to fall close to the manifold. We will show that
when the noise distribution is known one can use a
statistical deconvolution procedure to obtain a “de-
convolved measure” concentrated around the manifold
from which we can in turn draw a small number of
samples and apply the cleaning procedure described
above to them. Deconvolution has been extensively
studied in the statistical literature (see [9] and refer-
ences therein). Most related to our application is the
work of Koltchinskii [15] who uses deconvolution to
estimate the dimension and cluster tree of a distribu-
tion supported on a submanifold. We defer a detailed
comparison to Section 5.4.1 after the necessary prelim-
inaries have been introduced.

To the best of our knowledge, ours is the first paper to
obtain lower and upper minimax bounds for the prob-
lem of inferring the homology of a manifold. There are
a few existing results on upper bounds. A summary
of previous results and the results in this paper are in
Table 1.

Outline. In Section 2 we describe the statistical model.
In Section 3 we give a brief description of homology. In
Section 4 we give an overview of our techniques. We
derive the minimax rates for the four noise settings
in Section 5. Technical proofs are contained in the
Appendix.

2 Statistical Model

We assume that the sample {Y1, . . . , Yn} ⊂ RD con-
stitutes a set of “noisy” observations of an unknown
d-dimensional manifold M , with d < D, whose ho-
mology we seek to estimate. The distribution of the
sample depends on the properties of the manifold M
as well as on the type of sampling noise, which we de-
scribe below by formulating various statistical models
for sampling data from manifolds.

Notation. We let Bkr (x) denote a k-dimensional ball
of radius r centered at x. When k = D, we write Br(x)
instead of BDr (x). For any set M and any σ > 0 define
tubeσ(M) =

⋃
x∈M Bσ(x). Let vk denote the volume

of the k-dimensional unit ball. Finally, for clarity we

let c1, c2, . . . , C1, C2, . . . denote various positive con-
stants whose value can be different in different expres-
sions. The constants will be specified in the corre-
sponding proofs.

Manifold Assumptions. We assume that the un-
known manifold M is a d-dimensional smooth compact
Riemannian manifold without boundary embedded in
the compact set X = [0, 1]D. We further assume that
the volume of the manifold is bounded from above by a
constant which can depend on the dimensions d,D, i.e.
we assume vol(M) ≤ CD,d. Compact d-dimensional
manifolds without boundary typically reside in an am-
bient dimension D > d, an assumption we will make
throughout this paper. The main regularity condition
we impose on M is that its condition number be not
too small. The condition number κ(M) (see [16]) is
the largest number τ such that the open normal bundle
about M of radius r is imbedded in RD for every r < τ .

For τ > 0 let M ≡ M(τ)=
{
M : κ(M) ≥ τ

}
denote

the set of all such manifolds with condition number no
smaller than τ . A manifold with large condition num-
ber does not come too close to being self-intersecting.
We consider the collection P ≡ P(M) ≡ P(M, a) of
all probability distributions supported over manifolds
M inM having densities p with respect to the volume
form on M uniformly bounded from below by a con-
stant a > 0, i.e. 0 < a ≤ p(x) < ∞ for all x ∈ M .
For expositional clarity we treat a as a fixed constant
although our upper and lower bounds match in their
dependence on a.

The Noise Models. We consider four noise models
and, for each of them, we specify a class Q of proba-
bility distributions for the sample.

Noiseless. We observe data Y1, . . . , Yn ∼ P where P ∈
P. In this case, Q = Q(τ) = P.

Clutter Noise. We observe data Y1, . . . , Yn from the
mixture Q = (1− π)U + πP where, P ∈ P, 0 ≤ π ≤ 1
and U is a uniform distribution on X . The points
drawn from U are called background clutter. Then

Q = Q(π, τ) =
{
Q = (1−π)U+πP : P ∈ P

}
. Notice

that π = 1 reduces to the noiseless case.

Tubular Noise. We observe Y1, . . . , Yn ∼ QM,σ where
QM,σ is uniform on a tube of size σ around M . In this

case Q = Q(σ, τ) =
{
QM,σ : M ∈M

}
.

Additive Noise. The data are of the form Yi = Xi+ εi,
where X1, . . . , Xn ∼ P , for some P ∈ P, and ε1, . . . , εn
are a sample from a noise distribution Φ. Note that
Q = P ? Φ, that is, Q is the convolution of P and Φ.
We consider two cases:

1. Φ is a D-dimensional Gaussian with mean
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Noise Model
Noiseless Clutter Tubular Additive Gaussian General additive (τ fixed)

Upper Bound NSW This paper NSW This paper This paper
Lower Bound This paper This paper This paper This paper This paper

Table 1: Summary of our contributions

(0, . . . , 0) and covariance σ2I, with σ � τ . Define

Q = Q(σ, τ) =
{
Q = P ? Φ : P ∈ P

}
.

2. Φ is any known noise distribution whose Fourier
transform is bounded away from 0 but with the
added restriction that we only consider manifolds
with τ being a fixed constant. Then Q = Q(Φ) ={
Q = P ?Φ : P ∈ Pτ

}
. where Pτ is the subset of

P comprised of distributions supported on man-
ifolds M with condition number at least as large
as the fixed value τ .

The noise model used in [17] is to take the noise at any
point to be only along the normal fibres; this seems
unnatural and we will not consider that model here.

In almost all of the distribution classes considered we
allow for τ to vanish as n gets bigger, which is equiv-
alent to letting the difficulty of the statistical problem
increase with the sample size. To this end, we will also
analyze the quantity τn ≡ τn(ε) = inf{τ : Rn ≤ ε},
which corresponds to the smallest condition number
that permits accurate estimation. We call this the
resolution.

3 Homology

Often in our paper we will use phrases like “the homol-
ogy of the union of balls around samples”. In this sec-
tion we explain this usage and discuss briefly simplicial
homology (see Hatcher (2001) for a detailed treatment)
and its computation.

The homology H of a space S is a collection of groups
that correspond to topological features of S. In what
follows, it might help the reader’s intuition to imagine
that we are starting with a dense sample of points U on
a manifold and building a collection of simplices from
these points. The union of balls

⋃
y∈U Bε(y) gives a

geometric approximation to the underlying manifold.
This is however a continuous (infinite) collection of
points. To make computation tractable we need to be
able to reduce the computation of homology from a
continuous space to its discretization. The Čech com-
plex (a particular simplicial complex, see Figure 3)
which is described below gives a discrete representa-
tion of the union of balls. A classic result in topology
called the Nerve Theorem [11] states that the homol-
ogy of

⋃
y∈U Bε(y) is identical to the homology of the

corresponding Čech complex.

We now describe a simplicial complex and its homol-

ogy. A simplicial complex is a hereditary set system K
over a vertex set V , i.e. σ ⊂ σ′ ∈ K implies that σ ∈ K.
The dimension of a simplex σ is |σ|− 1; singletons are
0-simplices or vertices, pairs in K are 1-simplices or
edges, triples are 2-simplices or triangles, etc. A p-
chain is a formal sum of p-simplices. The coefficients
are taken in Z2, the integers mod 2.1 Thus, chains may
be viewed as subsets of simplices and addition (mod
2) as symmetric difference of sets. Addition of chains
forms an abelian group called the chain group Cp with
0 denoting the empty chain.

A p-simplex σ = {v0, . . . , vp} has p+ 1 simplices of di-
mension p− 1 on its boundary, denoted σi = σ \ {vi}.
The boundary of a simplex is ∂pσ =

∑p
i=0 σi. The

boundary operator ∂p : Cp → Cp−1 is the natural ex-
tension of the boundary of a simplex to the boundary
of a chain: ∂pc =

∑
σ∈c ∂pσ.

The kernel and image of the boundary operator are
two important subgroups of the chain group: the cycle
group: Zp = ker ∂p = {z ∈ Cp : ∂pz = 0}, and the
boundary group: Bp = im ∂p = {∂p+1c : c ∈ Cp+1}.
The cycles Zp are those chains that have boundary 0.
The boundary cycles Bp are those p-chains that are the
boundary of some p+ 1-chain. It is easy to check that
∂p−1∂pc = 0 and thus Bp ⊂ Zp ⊂ Cp. See Figure 1.

Two cycles z1, z2 ∈ Zp are homologous if z1− z2 ∈ Bp,
i.e. their difference is the boundary of a p + 1-chain.
The pth homology group Hp is defined as the quo-
tient group Zp/Bp. That is, the homology group is
a collection of equivalence classes of cycles. The first
homology group H0 corresponds to connected compo-
nents (clusters). The next homology group H1 corre-
sponds to cycles (or loops). Higher order homology
groups correspond to equivalence classes of higher di-
mensional cycles.2 The homology of K is the collection
H of all its homology groups.

The Čech complex is a specific simplicial complex de-
fined as follows. Fix some ε > 0 and a set of points
S ⊂ RD. The Čech complex consists of all simplices
σ such that

⋂
x∈σ Bε(x) 6= ∅ where Bε(x) is a ball of

radius ε centered at x. See Figure 3.

1In general, homology may be defined over any ring, but
we stick with Z2 for ease of exposition and computation.

2 Intuitively, boundary cycles are “filled in” cycles and
two cycles are homologous if one cycle can be deformed
into the other cycle.
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∂p+1 ∂p ∂p−1

0 0 0

Cp+1 Cp Cp−1

Zp−1ZpZp+1

Bp+1 Bp−1Bp

∂p+2

Figure 1: Relationship between chains Cp, cycles Zp = ker ∂p and boundaries Bp = im ∂p+1. The chains Cp
are just collections of simplices. The chains in Zp are the cycles. The cycles in Bp are the cycles that happen to
be boundaries of chains in Cp+1.

+ =

Figure 2: The sum of two 1-cycles is another 1-cycle.
Here the cycles are homologous because their sum (in
Z2)is the boundary of a 2-chain of triangles.

Figure 3: A union of balls and its corresponding Čech
complex.

Since the coefficient ring is a field, the computations
may be completely described by linear algebra. The
groups Cp, Zp, Bp, and Hp are vector spaces and the
boundary operators are linear maps. It is possible to
efficiently compute the homology groups of a simplicial
complex in time polynomial in the size of the complex.
The algorithm only involves row reduction on the ma-
trix representations of ∂p.

4 Techniques

4.1 Techniques for lower bounds

The total variation distance between two measures P
and Q is defined by TV(P,Q) = supA |P (A) − Q(A)|
where the supremum is over all measurable sets. It
can be shown that TV(P,Q) = P (G) − Q(G) = 1 −∫

min(P,Q) where G = {y : p(y) ≥ q(y)} and p and
q are the densities of P and Q with respect to any
measure µ that dominates both P and Q.

We shall make repeated use of Le Cam’s lemma which

we now state (see, e.g., [22]).

Lemma 1 (Le Cam). Let Q be a set of distributions.
Let θ(Q) take values in a metric space with metric ρ.
Let Q1, Q2 ∈ Q be any pair of distributions in Q. Let
Y1, . . . , Yn be drawn iid from some Q ∈ Q and denote
the corresponding product measure by Qn. Then

inf
θ̂

sup
Q∈Q

EQn
[
ρ(θ̂, θ(Q))

]
≥

1

8
ρ(θ(Q1), θ(Q2)) (1− TV(Q1, Q2))2n

where the infimum is over all estimators.

Le Cam’s lemma makes precise the intuition that if
there are distinct members of the class Q for which
the data generating distributions are close then the
statistical problem is hard given a small sample.

When we apply Le Cam’s lemma in this paper, Q1

and Q2 will be associated with two different manifolds
M1 and M2. We will take θ(Q) to be the homology of
the manifold and ρ(θ(Q1), θ(Q2)) = 1 if the homolo-
gies are the different and ρ(θ(Q1), θ(Q2)) = 0 if the
homologies are the same. The subtlety of establishing
tight lower bounds boils down to the task of finding a
set of distributions in the class Q for which the homol-
ogy of the underlying submanifolds are distinct but
whose empirical distributions are hard to distinguish
from a small number of samples.

We will use two representative manifolds M1 and M2

in the application of LeCam’s lemma which we de-
scribe here. See Figure 4. The manifold M1 is a pair
of 1 − τ d-balls (shown in blue) embedded 2τ apart
in RD joined smoothly at their ends (shown in red).
The manifold M2 is a pair of d-annuli (shown in blue)
embedded 2τ apart with outer radius 1− τ and inner
radius 4τ , smoothly joined at both the inner and outer
ends (shown in red). It is clear from the construction
that both these manifolds are d-dimensional compact,
have no boundary and have condition number τ . It is
also the case that H(M1) 6= H(M2).

If there exist two manifolds M1 and M2 with corre-
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Figure 4: The two manifolds M1 and M2, with d = 1, D = 2

sponding distributions Q1 and Q2 in Q such that (i)
H(M1) 6= H(M2) and (ii) Q1 = Q2 then we say that
the model Q is non-identifiable. In this case, recover-
ing the homology is impossible and we write Rn = 1
and n(ε) =∞.

4.2 Techniques for upper bounds

To establish an upper bound we need to construct an
estimator that achieves the upper bound. In the noise-
less and tubular noise cases the samples are in a thin
region around the manifold and our estimator is con-
structed from a union of balls (of a carefully chosen
radius) around the sample points.

In the case of clutter noise and additive Gaussian noise
samples are concentrated around the manifold but a
few samples may be quite far away from the manifold.
In these cases our upper bounds are obtained by an-
alyzing the performance of the Algorithm 1 (CLEAN)
with a carefully specified threshold and radius, which
is used to remove points in regions of low density far
away from the manifold. Our estimator is then con-
structed from a union of balls around the remaining
points. In the case of additive noise with general

Algorithm 1 CLEAN

• IN: (Xi)
n
i=1, threshold t, radius r

1. Construct a graph Gr with nodes {Xi}ni=1. In-
clude edge (Xi, Xj), if ||Xi −Xj || ≤ r.

2. Mark all vertices with degree di ≤ (n− 1)t.

• OUT: All unmarked vertices

known distribution the samples are not expected to
be concentrated around the manifold. We will first
use deconvolution to estimate a deconvolved measure
P̂n which we will show is densely concentrated in a
thin region around the manifold. We will then draw
samples from this measure, clean them and construct
a union of balls of appropriate radius around the re-
maining samples, and show that this set has the right
homology with high probability.

We now briefly review statistical deconvolution. We
refer the interested reader to the work of Fan [9] for
more details and to [15] for an application related to

ours. The procedure is similar to kernel density esti-
mation with a kernel modified to account for the ad-
ditive noise. For symmetric noise distributions Φ, we
consider two kernels K and Ψ such that K ? Φ = Ψ,
where ? denotes convolution. The deconvolution es-
timator is P̂n(A) = 1/n

∑n
i=1K(Yi − A). It is easy

to verify that EP̂n = P ? Ψ similar to regular kernel
density estimation with the kernel Ψ. In the noiseless
case we can even take K = Ψ = δ0 (a Dirac at 0)
and get back the empirical distribution of the sample.
More generally, we will be interested in Ψ that satis-
fies Ψ{x : |x| ≥ ε} ≤ γ. for ε and γ that we will later
specify.

In each of the above cases our final estimator is con-
structed from a union of balls around appropriate
points, and our theorems will show that these have the
correct homology with high probability. To compute
the homology one would construct the corresponding
Čech complex and compute its “boundary matrices”
(as described in Section 3). Recovering the homology
from these matrices consists of linear algebraic manip-
ulation. There are several fast algorithms to compute
the homology (either exactly [4] or approximately [5])
of the Čech complexes from large point sets in high
dimensions.

5 Minimax Rates

We now derive the minimax rates for homology esti-
mation under the four noise models described in sec-
tion 2. There are three quantities of interest: the
minimax risk Rn, the resolution τn and the sample
complexity n(ε). We write Rn � an (similarly for
τn � an) if there are positive constants c and C such
that c ≤ Rn/an ≤ C for all large n. Similarly, we write
n(ε) � a(ε) if there are positive constants c and C such
that c ≤ n(ε)/a(ε) ≤ C for all small ε. Our analysis
will show that the rates (as a function of n) are typi-
cally polynomial for the resolution and exponential for
the risk. We will often match upper and lower bounds
on sample complexity and resolution only up to loga-
rithmic factors, and correspondingly those on the risk
upto polynomial factors. In this case we will use the
notation Rn �∗ an, τn �∗ an, and n(ε) �∗ a(ε).

It is worth emphasizing at this point that despite the
fact that we use two specific manifolds in the appli-
cation of Le Cam’s lemma, the resulting lower bound
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holds for all manifolds in M and all distributions in
Q. Le Cam’s lemma allows one to get a lower bound
that holds for any estimator by using two carefully
chosen distributions in Q. The upper bounds are from
specific estimators and they establish an upper bound
on the number of samples to estimate the homology of
any manifold in our class.

5.1 Noiseless Case

Theorem 1. For all τ ≤ τ0(a, d), in the noiseless

case the minimax rate, Rn �∗ e−nτ
d

, where τ0(a, d) is
a constant which depends on a and d. Also, n(ε) �∗
τ−d log(1/ε) and τn �∗ ((1/n) log(1/ε))1/d.

We provide proof sketches for the lower and upper
bounds on Rn separately.

Lower Bound: Proof Sketch

To obtain a lower bound on the minimax risk over the
class Q(τ) we will consider the two carefully chosen
manifolds M1 and M2 described earlier.

We further need to specify the density on each of the
manifolds, and we choose two densities from P so that
the data distributions are as similar as possible while
respecting the constraint p(x) ≥ a. The construction
is described in more detail in the Appendix A.1.1, but
for now it suffices to notice that the two densities can
be constructed to differ only on the sets W1 = M1\M2

and W2 = M2 \M1 and can be made as low as a on
one of these sets. A straightforward calculation shows
that

TV(p1, p2) ≤ amax(vol(W1), vol(W2)) ≤ Cdaτd

where the constant Cd depends on d. Now, we apply
Le Cam’s lemma to obtain that

Rn ≥
1

8

(
1− Cdaτd

)n ≥ 1

8
e−2Cdnaτ

d

for all τ ≤ τ0(a, d). τ0(a, d) is a constant depending
on a and d. The lower bound of Theorem 1 follows.

Upper Bound: Proof Sketch

In the noiseless case the samples are densely concen-
trated around the manifold and our estimator is con-
structed from a union of balls of radius τ/2 around
the sample points. The upper bound on the mini-
max risk follows from a straightforward modification
of the results of [16]. For completeness, we reproduce
an adaptation of their main homology inference theo-
rem (Theorem 3.1) here.

Lemma 2. [NSW] Let 0 < ε < τ and let

U =
⋃n
i=1Bε(Xi). Let Ĥ = H(U). Let

ζ1 = vol(M)

a cosd θ1vol(Bdε/4)
, ζ2 = vol(M)

a cosd θ2vol(Bdε/8)
, θ1 =

sin−1 ε
8τ and θ2 = sin−1 ε

16τ . Then for all n >

ζ1
(
log(ζ2) + log

(
1
δ

))
, P(Ĥ 6= H(M)) < δ.

By assumption vol(M) ≤ CD,d for some constant CD,d
depending on d and D. To obtain a sample complex-
ity bound we simply choose ε = τ/2 and this gives
us n(ε) ≤ C1/(aτ

d)(C2 log(1/(aτd)) + log(1/ε)) which
matches the lower bound upto the factor of log(1/τ).
Further calculation (see Appendix A.1.1) then shows
that as desired Rn ≤ C1/τ

d exp(−C2naτ
d) for appro-

priate constants C1, C2, and τn ≤ C( logn log(1/ε)
an )1/d.

This establishes Theorem 1.

5.2 Clutter Noise

Theorem 2. For all τ ≤ τ0(a, d), in the clutter noise

case, Rn �∗ e−nπτ
d

, where τ0(a, d) is a constant which
depends on a and d. Also, n(ε) �∗ (1/(πτd) log(1/ε)
and τn �∗ (1/(nπ) log(1/ε))1/d.

Lower Bound: Proof Sketch

The lower bound for the class Q(π, τ) follows via the
same construction as in the noiseless case. In the cal-
culation of the total variation distance (see Appendix
A.1.2) we have instead

TV(q1, q2) ≤ πamax(vol(W1), vol(W2)) ≤ Cdπaτd

where Cd depends on d. As before the lower bound
follows from the application of Le Cam’s lemma.

Upper Bound: Proof Sketch

As a preliminary step we clean the data samples to
eliminate points that are far away from, while retaining
those close to, the manifold. Our analysis shows that
Algorithm 1 will achieve this, with high probability for
a carefully chosen threshold and radius. We then show
that taking a union of balls of the appropriate radius
around the remaining points will give us the correct
homology, with high probability. We give an outline
here and defer details to Appendix A.1.2.

1. We define two regions A = tuber(M) and B =

RD \ tube2r(M) where r < (
√

9−
√

8)τ
2 .

2. We then invoke Algorithm CLEAN on the data

with threshold t =
(
vDs

D(1−π)
vol(Box) + πavdr

d cosd θ
2

)
and radius 2r. Let I be the set of vertices re-
turned.

3. Through careful analysis we show that with high
probability I contains all the vertices from the
region A and none of the points in region B.

4. We further show that the retained points form a

thin dense cover of the manifold M , i.e.
{
M ⊂⋃

i∈I B2r(Xi)
}

.
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5. Using a straightforward corollary of Lemma 2 we
show that this thin dense cover can be used to
recover the homology of M with high probability.

Formally, in Appendix A.1.2 we prove the following
lemma,

Lemma 3. If n > max(N1, N2), and r < (
√

9−
√

8) τ2
where N1 = 4κ log(κ)

with κ = max

(
1 +

200

3ζ
log

(
2

δ

)
, 4

)
and N2 =

1

ζ

(
log

(
vol(M)

cosd(θ)vdrd

)
+ log

(
2

δ

))
where ζ = πavdr

d cosd(θ) and θ = sin−1(r/2τ), then
after cleaning the points {Xi : i ∈ I} are all
in tube2r(M) and are 2r dense in M . Let U =⋃
i∈I Bw(Xi) with w = r + τ

2 and let Ĥ = H(U). We

have that Ĥ = H(M) with probability at least 1− δ.

Taking r = (
√

9 −
√

8)τ/4, we obtain the sample
complexity bound, n(ε) ≤ C1

πτd
(log C2

τd
+ log(C3/ε)).

Given this sample complexity upper bound, the upper
bounds on minimax risk and resolution follow identical
arguments to the noiseless case (Appendix A.1.1).

5.3 Tubular Noise

Under this noise model we get samples uniformly from
a tubular region of width σ around the manifold. This
model highlights an important phenomenon in high-
dimensions. Although, we receive samples uniformly
from a full D dimensional shape these samples con-
centrate tightly around a d dimensional manifold. We
show that with some care we can still reconstruct the
homology at a rate independent of D.

Theorem 3. Under the tubular noise model we estab-
lish the following cases.

1. If σ ≥ 2τ then the model is non-identifiable and
hence, Rn = 1 and n(ε) >∞.

2. If σ ≤ C0τ , with C0 small and τ ≤ τ0(a, d), then

Rn �∗ e−nτ
d

, where τ0(a, d) is a constant which
depends on a and d. Also, n(ε) �∗ 1/τd and
τn �∗ ( 1

n log(1/ε))1/d.

Remark 1. The case when σ is very close to τ is
significantly more involved since it involves the exact
calculation of the volume of the tubular region and es-
tablishing tight upper and lower bounds here is an open
problem we are attempting to address in current work.

Lower bound: Proof Sketch

1. When d < D and σ ≥ 2τ the two manifolds M1

and M2 that we have considered thus far are still

identifiable because even when σ ≥ τ M2 has a
“dimple” along the co-dimensions that M1 does
not. To show that the class Q is still not iden-
tifiable we require a different construction. Con-
sider the manifolds M1 and M2 with two points
placed above and below the manifold at a dis-
tance 2τ above their centers along each of the co-
dimensions. Denote these new manifolds M ′1 and
M ′2. It is clear that H(M ′1) 6= H(M ′2), however
Q′1 = Q′2 since the extra points hide the “dimple”
and the two manifolds cannot be distinguished.

2. When d < D, and σ ≤ C0τ we return to our
old constructions of M1 and M2. There is how-
ever an important difference in that the two man-
ifolds differ on full D-dimensional sets, and one
might suspect that TV (q1, q2) = O(τD) or per-
haps O(σD−dτd). As we show in Appendix A.1.3
however, TV (q1, q2) is still O(τd), and we recover
an identical lower bound to the noiseless case.

Upper bound: Proof Sketch

We are interested in case when σ ≤ C0τ (in particular
σ < τ/24 will suffice). Our proof will involve two main
steps which we sketch here.

1. We first show that if we consider balls of suffi-
ciently large radius ε (compared to σ) then the
probability mass in these balls is O(εd). This
is a manifestation of the phenomenon alluded
to earlier: inside large enough balls the mass is
concentrated around the lower dimensional man-
ifold. Precisely, define kε = infp∈M Q(Bε(p)). In
Lemma 9 in the Appendix, we show that, if ε� σ
is large, kε is of order Ω(εd).

2. There is however a disadvantage to considering
balls that are too large. The homology of the
union of balls around the samples may no longer
have the right homology. Using tools from NSW,
we show in the Appendix that we can balance
these two considerations for manifolds with high
condition number, i.e. provided σ < τ/24, we can
choose balls that are both large relative to σ and
whose union still has the correct homology.

We will prove the following main lemma in the Ap-
pendix.

Lemma 4. Let Nε be the ε-covering number of the
submanifold M . Let U =

⋃n
i=1Bε+τ/2(Xi). Let Ĥ =

H(U). Then if n > 1
kε

(log(Nε) + log(1/δ)), P(Ĥ 6=
H(M)) < δ as long as σ ≤ ε/2 and ε < (

√
9−
√

8)τ
2 .

Notice, that we require σ < (
√

9−
√

8)τ
4 which is satisfied

if σ < τ/24 (for instance). To obtain the upper bound
set ε = 2σ, and observe that Nε = O(1/εd) = O(1/τd)
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and kε = O(εd) = O(τd). This gives us that if
n ≥ C1

τd
(log(C2

τd
) + log( 1

δ )) we recover the right homol-
ogy with probability at least 1− δ. The upper bound
on minimax risk and resolution follows from similar
arguments to those made previously.

5.4 Additive Noise

For additive noise we consider two cases. In the first
case, we derive the minimax rates for additive Gaus-
sian noise under the somewhat restrictive assumption
that C

√
Dσ < τ . This problem is related of the prob-

lem of separating mixtures of Gaussians (which corre-
sponds to the case where the manifold is a collection
of points and 2τ is the distance between the closest
pair). In this case have the following theorem.

Theorem 4. For all τ ≤ τ0(a, d) and 8
√
Dσ < τ ,

Rn �∗ e−nτ
d

, where τ0(a, d) is a constant which de-
pends on a and d. Also, n(ε) �∗ (1/τd) log(1/ε) and

τn �∗ ((1/n) log(1/ε))
1/d

.

As in the clutter noise case we need to first clean the
data and then take a union of balls around the points
which survive. We analyze this procedure in the Ap-
pendix.

5.4.1 Deconvolution

Here we consider more general known noise distribu-
tions but work over the class of distributionsQ(Φ) over
manifolds with τ fixed. We first use deconvolution to
estimate a deconvolved measure P̂n which is concen-
trated around the manifold. We then draw samples
from this measure, clean them and construct a union
of balls H around these samples, and show that H has
the right homology with high probability. The class of
noise distributions we will consider satisfy the follow-
ing assumption on its density.

Assumption 1. Denote ρ(R) = inf |t|∞≤R |Φ?(t)|,
where R > 0, |t|∞ = max1≤j≤m |tj | and Φ?(t) is the
Fourier transform of the symmetric noise density Φ.
We assume ρ(R) > 0.

This is a standard assumption in the literature on de-
convolution (see [9, 15]), since as described deconvo-
lution requires us to divide by the Fourier transform
of the noise which needs to be bounded away from 0
for the procedure to be well behaved. The assump-
tion is satisfied by a variety of noise distributions in-
cluding Gaussian noise. Our main result says that for
this broad class of noise distributions the deconvolu-
tion procedure described above will achieve an optimal
rate of convergence.

Theorem 5. In the additive noise case with τ fixed
for Φ satisfying Assumption 1. Rn � e−n. Hence,
n(ε) � log(1/ε).

Lower Bound: Proof SketchTo obtain the lower
bound one can consider the same construction from
the previous subsection with additive Gaussian noise.
If τ is taken to be fixed we obtain the desired bound.

Upper Bound: Proof Sketch Our proof of the up-
per bound follows similar lines to that of Koltchinskii
[15]. We deviate in two significant aspects. Koltchin-
skii only assumes an upper bound on the density,
which he shows is sufficient to estimate weak geomet-
ric characteristics like the dimension of the manifold.
To show that we can accurately reconstruct its homol-
ogy we require both an upper and lower bound and
our methods are quite different. Koltchinskii uses an
epsilon net of the entire compact set containing the
manifold critically in his construction and his proce-
dure is thus not implementable/practical. Our algo-
rithm instead draws a small number of samples from
the deconvolved measure and uses those to estimate
the homology resulting in a practical procedure. We
prove the following upper bound in the Appendix.

Lemma 5. Given n samples from Q(Φ) with Φ satis-
fying Assumption 1, there exist C1, C2, c1 > 0 such
that P (H(H) 6= H(M)) ≤ C1e

−c1n, where H is a
union of balls of radius 5ε+τ

2 centered around m ≥ C2n

samples drawn from the deconvolved measure P̂n with
a kernel Ψ with parameters γ, ε (specified in the proof).
The samples are cleaned using the deconvolved measure
by considering balls of radius 4ε at a threshold 2γ.

Remark 2. The cleaning procedure we use here is dif-
ferent from the Algorithm CLEAN. We remove points
around which a ball of appropriate radius has low prob-
ability mass under the deconvolved measure. This is
equivalent to using the deconvolved measure in place
of the k-NN density estimate implicitly constructed by
the CLEAN procedure.

Simple calculations show that this lemma together
with the lower bound give the exponential minimax
rate described in Theorem 5.

6 Conclusion

We have given the first minimax bounds for homology
inference. These bounds give insight into the intrinsic
difficulty of the problem under various assumptions.
Our bounds show that it is often possible to estimate
the homology of a manifold at fast rates independent
of the ambient dimension.

Actual implementation of homology inference has be-
come tractable thanks to advances in computational
topology. However, as our proofs reveal, recovering
the homology requires the careful selection of several
tuning parameters. In current work, we are develop-
ing methods for choosing these parameters in a statis-
tically sound, data-driven way.
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A Appendix – Supplementary
Material

A.1 Key technical lemmas from [16]

We will need two technical lemmas, which follow from
[16].

Lemma 6 (Ball volume lemma, Lemma 5.3 in
[16]). Let p ∈ M . Now consider A = M ∩ Bε(p).
Then vol(A) ≥ (cos(θ))dvol(Bdε (p)) where Bdε (p) is
the a d-dimensional ball in the tangent space at p,
θ = sin−1 ε

2τ .

Next, consider a collection of balls {Br(pi)}i=1,...,n

centered around points pi on the manifold and such
that M ⊂ ∪li=1Br(pi).

Lemma 7 (Sampling lemma, Lemma 5.1 in [16]).
Let Ai = Br(pi) be a collection of sets such that ∪li=1Ai
forms a minimal cover of M . If Q(Ai) ≥ α, and

n >
1

α

(
log l + log

(
2

δ

))
then w.p. at least 1 − δ/2, each Ai contains at least
one sample point, and M ⊂ ∪ni=1B2r(xi). Further we

have that l ≤ vol(M)
cosd(θ)vdrd

.

A.1.1 Proofs for the noiseless case

Lower bound Here we describe the densities on the
two manifolds M1 and M2. There are two sets of inter-
est to us: W1 = M1 \M2 which corresponds to the two
“holes” of radius 4τ in the annulus, and W2 = M2\M1

which corresponds to the d-dimensional piece added to
smoothly join the inner pieces of the two annuli in M2.

By construction, vol(W1) = 2vd(4τ)d where vd is the
volume of the unit d-ball. vol(W2) is somewhat tricky
to calculate exactly due to the curvature of W2 but
it is easy to see that vol(W2) is also O(τd) with the
constant depending on d.

One of the densities is constructed in the following way,
on the set of larger volume (between W1 and W2) we
set p(x) = a, and evenly distribute the rest of the mass
over the remaining portion of the manifold (we are
guaranteed that the mass on the rest of the manifold
is at least a since otherwise the constraint p(x) ≥ a
can never be satisfied).

The other density is constructed to be equal (to the
first density) outside the set on which the two mani-
folds differ. The remaining mass is spread evenly on
the set where they do differ. We are again guaranteed
that p(x) ≥ a by construction.

Let us now calculate the TV between these two den-
sities. This is just the integral of the difference of

the densities over the set where one of the densities
is larger. Since the two densities are equal outside
W1 ∪W2 and disjoint over W1 ∪W2 it is clear that

TV (p1, p2) = amax(vol(W1), vol(W2) ≤ O(aτd)

with the constant depending on d. The lower bound
follows from the calculations in the main paper.

Upper bound The NSW lemma tells us that for n >

ζ1
(
log(ζ2) + log

(
1
δ

))
, with ζ1 = vol(M)

a cosd θ1vol(Bdε/4)
, ζ2 =

vol(M)

cosd θ2vol(Bdε/8)
, θ1 = sin−1 ε

8τ and θ2 = sin−1 ε
16τ , we

have P(Ĥ 6= H(M)) < δ.

By assumption, we have vol(M) ≤ C. We further
take ε = τ/2. It is clear that in ζ1 and ζ2 all terms
except the ball volumes are constant. This gives us
that ζ1 = C1/(aτ

d) and ζ2 = C2/(aτ
d).

Now, the NSW lemma can be restated as if n =
C1/τ

d(log(C2/τ
d) + log(1/δ)) we recover the homol-

ogy with probability at least 1 − δ. Notice that this
means that the minimax risk ≤ δ.

A straightforward rearrangement of this gives us

Rn ≤ C2/(aτ
d) exp(−naτd/C1)

for appropriate C1, C2. To bound the resolution we
rewrite this as

Rn ≤ exp

(
−naτ

d

C1
+ log

(
C2

aτd

))
One can verify that if

τd ≤ C log n log(1/ε)

n

for an appropriately large C, we have Rn ≤ ε as de-
sired.

A.1.2 Proofs for the clutter noise case

Lower bound This is a straightforward extension of
the noiseless case. The densities are constructed in an
identical manner. The contribution to the densities
from the clutter noise is identical in each case. As in
the analysis for the noiseless case we bound the total
variation distance between the two densities. We have
an additional factor of π which is the mixture weight
of the component corresponding to the density on the
manifold.

TV (q1, q2) = πamax(vol(W1), vol(W2)) ≤ Cdπaτd

Given this bound the calculations are identical to those
in the noiseless case.

Upper bound As a preliminary step we will need to
clean the data to eliminate points that are far away
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from the manifold. Our analysis will show that Algo-
rithm 1 will achieve this, with high probability. We
will then show that taking a union of balls of the ap-
propriate radius around the remaining points will give
us the correct homology, with high probability.

Let a = infx∈M p(x), which is strictly positive by as-
sumption. Define, A = tuber(M) and B = RD −
tube2r(M) where r < (

√
9−
√

8)τ
2 . Following [17], we de-

fine αs = inft∈AQ(Bs(t)) and βs = supt∈B Q(Bs(t))

where s = 2r. Then αs ≥ vDs
D(1−π)

vol(Box) +πavdr
d cosd θ =

α and βs ≤ vDs
D(1−π)

vol(Box) = β where θ = sin−1( r
2τ ). The

second term of the bound on αs follows in two steps:
first observe that for any point x in A, Bs(x) ⊇ Br(t)
where t is the closest point on M to x. Now, we use
Lemma 6 to bound Q(Br(t)).

We will now invoke Algorithm CLEAN on the data with

threshold t =
(
vDs

D(1−π)
vol(Box) + πavdr

d cosd θ
2

)
and radius

2r. Let I be the set of vertices returned.

Define the events E1 =

{
{Xi : i ∈ I} ⊇ {Xi ∈

A} and {Xi : i ∈ Ic} ⊇ {Xi ∈ B}

}
and E2 ={

M ⊂
⋃
i∈I B2r(Xi)

}
. We will show that E1 and E2

both hold with high probability.

For E1 to hold, we need β to be not too close to α,
in particular β < α/2 will suffice. This happens with
probability 1, for τ small if d < D. By Lemma 13
in the Appendix, E1 happens with probability at least
1− δ/2, provided that n > 4κ log κ, where

κ = max

(
1 +

200

3πavdrd cosd(θ)
log

(
2

δ

)
, 4

)
.

Now we turn to E2. Let p1, . . . , pN ∈ M be such that
Br(p1), . . . , Br(pN ) forms a minimal covering of M .

From Lemma 7, we have that N ≤ vol(M)
cosd(θ)vdrd

. Let

Aj = Br(pj). Then

Q(Aj) ≥ vDs
D(1− π)

vol(Box)
+ πavdr

d cosd(θ)

≥ πavdr
d cosd(θ) ≡ γ.

Using again Lemma 7, if n > 1
γ

(
logN + log

(
2
δ

))
, then

with probability at least 1 − δ/2, each Ai contains at
least one sample point, and hence M ⊂

⋃
i∈I B2r(Xi),

which implies that E2 holds.

Combining these we are now ready to again apply the
main result from NSW. We restate this lemma in a
slightly different form here.

Lemma 8. [NSW] Let S be a set of points in the
tubular neighborhood of radius R around M . Let U =

⋃
x∈S Bε(x). If S is R-dense in M then Ĥ(U) = H(M)

for all R < (
√

9−
√

8)τ , if ε = R+τ
2 .

Combining the previously established facts with the
lemma above we obtain Lemma 3 from the main paper.
Taking r = (

√
9 −
√

8)τ/4 in that lemma, we can see
that if n ≥ C1

πτd
(log C2

τd
+ log(C3/ε)) then we recover

the correct homology with probability at least 1− ε.

This is a sample complexity upper bound. Corre-
sponding upper bounds on the minimax risk and res-
olution follow the arguments of the noiseless case.

A.1.3 Proofs for the tubular noise case

Lower bound In this setting we get samples uni-
formly in a full dimensional tube around the manifold.
We are interested in the case when σ ≤ C0τ for a small
constant C0.

Let us denote the density q1 at a point in the tube
around M1 by θ1 and the density q2 around M2 by θ2.
Since, it is not straightforward to decide whether θ1 ≤
θ2 or not we will need to consider both possibilities.
We will show the calculations assuming θ1 ≤ θ2 (the
other calculation follows similarly).

Now, remember from the definition of total variation
TV = q1(G)− q2(G) where G is the set where q1 > q2.
We need an upper bound on total variation and so it
suffices to use TV ≤ q1(G+)− q2(G−) where G+ and
G− are sets containing and contained inG respectively.

Since, θ1 < θ2 we have G is contained in the holes (of
radius 4τ) of the two annuli, and G contains a strip of
width at least 2τ − 2σ in these holes. These are G+

and G−.

We need to upper bound the mass under q1 in G+

and lower bound the mass under q2 in G−. We can
now follow the a similar argument to the one made
below (in the tubular noise upper bound) to obtain
bounds on the various volumes. In each case, the
volume of the tubular region is Ω(vol(M)σD−d), and
both M1 and M2 have constant volume, in particular
c1 ≤ vol(M) ≤ C1. Giving us that the tubular region
has volume Ω(σD−d).

It is also clear that both G+ and G− have volumes
that are Ω(σD−dτd) (these can be calculated exactly
since they are cylindrical with no additional curvature
but we will not need this here). Here we use that σ
is not too close to τ (and in particular is at most a
constant fraction of τ).

Since q1 and q2 are both uniform in their respective
tubes, it follows that

TV (q1, q2) ≤ Ω

(
σD−dτd

σD−d

)
= Ω(τd)
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Notice, that we assumed θ1 ≤ θ2 above. The other cal-
culation is nearly identical and we will not reproduce
it here.

Upper bound Denote by Mσ the tube of radius σ
around M . Recall that we are interested in the case
when σ � τ , and ε = τ/2.

Lemma 9. If ε� σ (in particular ε ≥ 2σ will suffice)

kε = Ω(εd).

Proof. For any p ∈M ,

Q(Bε(p)) =
vol(Bε(p) ∩Mσ)

vol(Mσ)
.

We will prove the claim by deriving derive an up-
per bound on the denominator and a lower bound
on the numerator using packing/covering arguments,
both bounds holding uniformly in p.

Upper bound on vol(Mσ)
We consider a covering of M by γ-balls of d dimen-
sions, and denote the number of balls required Nγ ,
and the centers Cγ . It is clear Nγ is bounded by the
number of balls of radius γ/2 one can pack in M . A
simple volume argument then gives

Nγ ≤ C
vol(M)

(γ/2)d
,

for some constant C. Given this covering of M , it is
easy to see that γ+σ D-dimensional balls around each
of the centers in Cγ covers the tubular region. Thus,
we have

vol(Mσ) ≤ vDNγ(γ + σ)D ≤ vDC
vol(M)

(γ/2)d
(γ + σ)D,

for any γ. Selecting γ = σ, we have

vol(Mσ) ≤ CD,dvol(M)σD−d

for some constant CD,d depending on the manifold and
ambient dimensions, independent of σ.

Lower bound on vol(Bε(p) ∩Mσ)
Define

A(p) = M ∩Bε−σ(p),

B(p) = M ∩Bε(p),
Bσ(p) = Mσ ∩Bε(p).

Denote with Nσ the number of points we can “pack”
in A(p) such that the distance between any two points
is at least 2σ. Denote the points themselves by the set
C. Then,

vol(Bσ) ≥ NσvDσD

where vD is the volume of the unit ball in D-
dimensions. To see this just note that every point that
is at most σ away from any point in C is contained in
Bσ, and these sets are disjoint so the union of σ balls
around C is contained in Bσ.

Now, to prove a lower bound on Nσ we invoke some
ideas from [16]. Consider, the map f described in
Lemma 5.3 in [16], which projects the manifold onto
its tangent space, and observe its action on A(p). It
is clear by their discussion that this map projects the
manifold onto a superset of a ball of radius (ε−σ) cos θ,
for θ = sin−1( ε−σ2τ ). In addition to being invertible,
this map is a projection, and only shrinks distances
between points. So if we can derive a lower bound on
the number of points we can “pack” in this projection
then it is also a lower bound on Nσ. Now, the set is
just a ball in d-dimensions of radius (ε− σ) cos θ. Us-
ing, the fact that 2σ balls around each of the points in
C must cover this set a simple volume argument shows

Nσ(2σ)d ≥ vd((ε− σ) cos θ)d,

i.e.

Nσ ≥ CD,d
(

(ε− σ) cos θ

σ

)d
,

which gives a lower bound.

Putting the upper and lower bound together, we get

kε = inf
p∈M

Q(Bε(p))

≥ C ′D,d
1

vol(M)σD−d

(
(ε− σ) cos θ

σ

)d
σD

= C ′D,d
[(ε− σ) cos θ]

d

vol(M)
,

for some quantity C ′D,d, independent of σ.

We will prove the following main lemma.

Lemma 10. Let Nε be the ε-covering number of the
submanifold M . Let U =

⋃n
i=1Bε+τ/2(Xi). Let Ĥ =

H(U). Then if n > 1
kε

(log(Nε) + log(1/δ)), P(Ĥ 6=
H(M)) < δ as long as σ ≤ ε/2 and ε < (

√
9−
√

8)τ
2 .

Proof. This is a straightforward consequence of
Lemma 8 and Lemma 7.

A.1.4 Proof of Theorem 4 (additive case)

Lower Bound

From Lemma 14 we see that convolution only decreases
the total variation distance, and so the lower bound for
the noiseless case is still valid here.
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Upper Bound

We will again proceed by a similar argument to the
clutter noise case. Let

√
Dσ < r, R = 8r and

s = 4r and set αs = infp∈AQ(Bs(p)) and βs =
supp∈B Q(Bs(p)), where A = tuber(M), B = RD −
tubeR(M).

As in the clutter noise case, we will need the two events
E1 and E2 to hold with high probability.

We will use the following version of a common χ2 in-
equality, established by [17].

Lemma 11. For a D-dimensional Gaussian random
vector

P(||ε|| >
√
T ) ≤ (ze1−z)D/2

where z = T
Dσ2

Using this inequality,

P(||ε|| ≥ 4r) ≤ (16 exp{−15})D/2 ≡ t

and

P(||ε|| ≥ 2r) ≤ (4 exp{−3})D/2 ≡ γ.

Observe that these are both constants. Next, it is easy
to see that

αs ≥ Q(Bs−r(p)) ≥ avdrd(cos θ)d(1− γ) ≡ α,

where θ = sin−1(r/(2τ)), and

βs ≤ vD(8r)Dt ≡ β.

As in the clutter noise, we need β to be sufficiently
smaller than α if we are to successfully clean the data.
As we are interested in the case when r is small, if
D > d then we can take β ≤ α/2, while, if D = d then
we will need that the dimension is quite large (observe
that both γ and t tend to zero rapidly rapidly as D
grows).

We are now in a position to invoke the Lemma 13
to ensure E1 holds with high probability for n large
enough. Further, one can see that the mass of an r/2-
ball close to manifold is at least

Q(Ai) ≥ avd(1− γ)(cos θ)d(r/2)d

for θ = sin−1(r/(4τ)). This quantity is also O(rd) as
desired, and for n large enough we can ensure E2 holds
with high probability. Under the condition on σ, and

r we have r ≤ (
√

9−
√

8)τ
8 . At this point we can invoke

Theorem 5.1 from [17] to see that for n �∗ 1
τd

we
recover the correct homology with high probability.

A.1.5 Deconvolution

Upper bound Recall, that the kernel Ψ satisfies

Ψ{x : |x| ≥ ε} ≤ γ (2)

with ε and γ being small constants that we will specify
in our proof.

The starting point of our proof will be a uniform con-
centration result from Koltchinskii [15].

Lemma 12. Consider the event

A = {max
x
|P̂n(B2ε(x))− P̂Ψ(B2ε(x))| < γ}

For any small constants ε and γ, there exists q ∈ (0, 1)
such that

P (Ac) ≤ 4qn

This lemma tells us that the deconvolved measure is
uniformly close to a smoothed (by the kernel Ψ) ver-
sion of the true density.

Our first step will be to draw

m >
1

ω

(
log l + log

(
2

δ

))
samples from P̂n, where ω = infx∈M P̂n(B2ε(x)), and
l is the 2ε covering number of the manifold, and
δ = 8qn. Denote, this sample Z. We know that

l ≤ vol(M)
cosd(θ)vd(2ε)d

.

Let us first show that we can choose ε and γ so that ω
is at least a small positive constant.

ω = inf
x∈M

P̂n(B2ε(x))

≥ inf
x∈M

PΨ(B2ε(x))− γ

Notice that,

PΨ(B2ε) ≥ P (Bε)Ψ(x : |x| ≤ ε)

So, we have,

ω ≥ inf
x∈M

P (Bε(x))(1− γ)− γ

Using the ball volume lemma we have,

ω ≥ avdε
d cosd θ(1− γ)− γ

where θ = sin−1(ε/2τ). Notice, that τ is a fixed con-
stant, and ε and γ are constants to be chosen appro-
priately. It is clear that for γ ≤ Cd,τ ε, with Cd,τ small
we have

ω ≥ c
for a small constant c which depends on τ ,d and our
choices of ε and γ.

We now use the sampling lemma 7 to conclude that
w.p. at least 1− 4qn,
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1. The m samples are 4ε dense around M .

2. M ⊂ ∪mi=1B4ε(xi)

Our next step will be a cleaning step. This cleaning
procedure differs from the Algorithm CLEAN in that
we use the deconvolved measure to clean the data. In
particular, we will remove all points from Z for which
P̂n(B4ε(Zi)) ≤ 2γ. Denote the remaining points by
W . Our estimator will then be constructed from

H =
⋃
B 5ε+τ

2
(Wi)

To analyze this cleaning procedure, we use the uniform
concentration lemma 12 above, and consider the case
when event A happens.

1. All points far away from M are eliminated:
In particular, for any point x if we have

dist(B4ε(x),M) ≥ ε

then the corresponding point is eliminated.

To see this is simple. We eliminated all points
with deconvolved empirical mass P̂n(B4ε) < 2γ.
Since, we are assuming event A happened, we
have for any remaining point PΨ(B4ε) > γ. Now,
we have that

Ψ{x : |x| ≥ ε} ≤ γ

From this we see that some part of B4ε must be
within ε of M , and we have arrived at a contra-
diction.

2. All points close to M are kept: In particular,
for any point x if

dist(x,M) ≤ 2ε

then the corresponding point is kept.

We need to show P̂n(B4ε(x)) ≥ 2γ. Notice, that

P̂n(B4ε(x)) ≥ P̂n(B2ε(π(x))) where π(x) is the
projection of x onto M . This quantity is just ω.

To finish, we need to show that we can choose
ε and γ such that ω ≥ 2γ. Since, ω ≥
avdε

d cosd θ(1 − γ) − γ which as a function of γ
is continuous, bounded from below by a constant
depending on τ , d and ε and monotonically in-
creasing as γ decreases we have for γ small enough

ω ≥ 2γ

3. The set H has the right homology: We have
shown that the cleaning eliminates all points out-
side a tube of radius 5ε, and further keeps all
points in a tube of radius 2ε. From the sampling

result we know the points that we keep are 4ε
dense and that M ⊂ ∪mi=1B4ε(xi). We can now
apply lemma 8 to conclude that H has the right
homology provided

ε <
(
√

9−
√

8)τ

5

Since τ is a fixed constant we can always choose
ε small enough to satisfy this condition. To re-
view, we need to select γ and ε to satisfy three
conditions

(a) ω ≥ avdεd cosd θ(1− γ)− γ has to be atleast
a small positive constant.

(b) ω ≥ 2γ

(c) ε < (
√

9−
√

8)τ
5

Each of these can be satisfied by choosing γ and
ε small enough.

Now, returning to m. We have

m >
1

ω

(
log l + log

(
2

δ

))
where ω = infx∈M P̂n(B2ε(x)), and l is the 2ε cov-

ering number of the manifold l ≤ vol(M)
cosd(θ)vd(2ε)d

,

and δ = 8qn. It is clear that all terms except
those in n are constant. In particular it is easy to
see that

m ≥ Cn

for C large enough is sufficient.

From this we can conclude with probability at least
1−8qn our procedure will construct an estimator with
the correct homology. Since, q ∈ (0, 1) the success
probability can be re-written as at least 1− e−cn for c
small enough. Together this gives us the deconvolution
lemma from the main paper.

A.2 Additional technical lemmas

A.2.1 The cleaning lemma

In this section we sharpen Lemma 4.1 of [17], also
known as the A-B lemma, by using Bernstein’s in-
equality instead of Hoeffding’s inequality. This modi-
fication is crucial to obtain minimax rates.

Lemma 13. Let βs ≤ β < α/2 ≤ αs/2. If n >
4β log β, where

β = max

(
1 +

200

3α
log

(
1

δ

)
, 4

)
,

then procedure CLEAN(α+β
2 ) will remove all points in

region B and keep all points in region A with probabil-
ity at least 1− δ.
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Proof. We use the notation established in section 5.2.
We first analyze the set A.

For a point Xi in A, let q = q(i) = Q(Bs(Xi)), and
define,

Zj = I(Xj ∈ Bs(Xi)), j 6= i,

where I denotes the indicator function. Notice that
the random variables {Zj , j 6= i} are independent
Bernoulli with common mean q.

We will consider two cases.

Case 1: α ≤ q ≤ 2α.
Notice that if

q − 1

n− 1

∑
j 6=i

Zj ≤
α

4

the point Xi will not be removed. By Bernstein’s in-
equality, the probability that Xi will instead be re-
moved is

P

q − 1

n− 1

∑
j 6=i

Zj ≥
α

4

 ≤ exp

{
−1

2

(n− 1)(α/4)2

2α+ α/12

}

≤ exp

{
− 3

200
(n− 1)α

}
.

Case 2: q > 2α.
In this case if

q − 1

n− 1

∑
j 6=i

Zj ≤ q −
3α

4

the point Xi will be removed. Another application of
Bernstein’s inequality yields

P

q − 1

n− 1

∑
j 6=i

Zj ≥ q −
3α

4


≤ exp

{
−1

2

(n− 1)(q − 3α/4)2

q + (q − 3α/4)/3

}
≤ exp

{
−1

2
(n− 1)

[
q

2
+

9α2

32p
− 3α

4

]}
≤ exp

{
− (n− 1)α

8

}
.

Now, consider a point Xi in the region B, and define
q and the Zjs in an identical way. This time if

1

n− 1

∑
j 6=i

Zj − q ≤
α

4
,

the point Xi will not be removed. By Bernstein’s in-
equality,

P

 1

n− 1

∑
j 6=i

Zj − q ≥
α

4

 ≤ exp

{
−1

2

(n− 1)(α/4)2

α/2 + α/12

}

≤ exp

{
− 3

56
(n− 1)α

}

Putting all the pieces together, we obtain that the
cleaning procedure succeeds on all points with proba-
bility at least n exp

{
− 3

200 (n− 1)α
}

. This requires,

n− 1 >
200

3α

(
log n+ log

(
1

δ

))
i.e.

n > 1 +
200

3α
log

(
1

δ

)
+

200

3α
log n

If δ < 1/2, then 1 + 200
3α log

(
1
δ

)
> 200

3α , so it is enough
to solve

n > x+ x log n

with x = 1 + 200
3α log

(
1
δ

)
. The result of the lemma

follows.

A.2.2 Convolution only decreases total
variation

Lemma 14. Let P and Q two probability measures in
RD with common dominating measure µ. Then,

TV(P ? Φ, Q ? Φ) ≤ CφTV(P,Q).

where ? denotes deconvolution and Φ is a probability
measure on RD.

Proof. This is a standard result, but we provide a
proof for completeness. Let p ? φ denote the Lebesgue
density of the probability distribution P ? Φ, i.e.

p ? φ(z) =

∫
φ(z − x)p(x)dµ(x), z ∈ RD.

Similarly, q?φ denotes the analogous quantity forQ?Φ.
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Then,

2TV(P ? Φ, Q ? Φ) =

∫
RD
|p ? φ(z)− q ? φ(z)| dz

=

∫
RD

∣∣∣∣∫ φ(z − x)p(x)dµ(x)

−
∫
φ(z − x)p(x)dµ(x)

∣∣∣∣ dz
=

∫
RD

∣∣∣∣∫ φ(z − x)(p(x)

−q(x))dµ(x)| dz

≤
∫
RD

∫
|φ(z − x)(p(x)

−q(x))| dµ(x)dz

≤
∫ ∫

RD
φ(z − x)dz |p(x)− q(x)| dµ(x)

=

∫
|(p(x)− q(x)| dµ(x)

= 2TV(P,Q)
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