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A Geometric Perspective on Sparse Filtrations*

Nicholas J. Cavannat

Abstract

We present a geometric perspective on sparse filtrations
used in topological data analysis. This new perspective
leads to much simpler proofs, while also being more
general, applying equally to Rips filtrations and Cech
filtrations for any convex metric. We also give an algo-
rithm for finding the simplices in such a filtration and
prove that the vertex removal can be implemented as a
sequence of elementary edge collapses.
A video illustrating this approach is available [7].

1 Introduction

Given a finite data set in a Euclidean space, it is natural
to consider the balls around the data points as a way to
fill in the space around the data and give an estimate of
the missing data. The union of balls is often called the
offsets of the point set. Persistent homology was origi-
nally invented as a way to study the changes in topology
of the offsets of a point set as the radius increases from
0 to co. The input to persistent homology is usually a
filtered simplicial complex, that is, an ordered collection
of simplices (vertices, edges, triangles, etc.) such that
each simplex appears only after its boundary simplices
of one dimension lower. The Nerve Theorem and its
persistent variant allow one to compute the persistent
homology of the offsets by instead looking at a discrete
object, a filtered simplicial complex called the nerve (see
Fig. [I). The simplest version of this complex is called
the Cech complex and it may be viewed as the set of
all subsets of the input, ordered by the radius of their
smallest enclosing ball. Naturally, the Cech complex
gets very big very fast, even when restricting to subsets
of constant size. A common alternative is the Rips com-
plex but it suffers similar difficulties. Over the last few
years, there have been several approaches to building
sparser complexes that still give good approximations
to the persistent homology [21, 17 111 [3] 2].
Our main contributions are the following.

1. A much simpler explanation for the construction
and proof of correctness of sparse filtrations. Our
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Figure 1: A point set sampled on a sphere, its offsets,
and its (sparsified) nerve complex.

new geometric construction shows that the sparse
complex is just a nerve in one dimension higher.

2. The approach easily generalizes to Rips, Cech and
related complexes (the offsets for any convex met-
ric). This is another advantage of the geomet-
ric view as the main result follows from convexity
rather than explicit construction of simplicial map
homotopy equivalences.

3. A simple geometric proof that the explicit removal
of vertices from the sparse filtration can be done
with simple edge contractions. This can be done
without resorting to the full-fledged zigzag persis-
tence algorithm [5 @] 18| T9] or even the full sim-
plicial map persistence algorithm [IT], [1].

The most striking thing about this paper is perhaps
more in what is absent than what is present. Despite
giving a complete treatment of the construction, cor-
rectness, and approximation guarantees of sparse filtra-
tions that applies to both Cech and Rips complexes,
there is no elaborate construction of simplicial maps or
proofs that they induce homotopy equivalences. In fact,
we prove the results directly on the geometric objects,
the covers, rather than the combinatorial objects, the
complexes, and the result is much more direct. In a way,
this reverses a common approach in computational ge-
ometry problems in which the geometry is as quickly as
possible replaced with combinatorial structure; instead,
we delay the transition from the offsets to a discrete
representation until the very end of the analysis.

Related Work. Soon after the introduction of persis-
tent homology by Edelsbrunner et al. [13], there was
interest in building more elaborate complexes for larger
and larger data sets. Following the full algebraic char-
acterization of persistent homology by Zomorodian and
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Carlsson [23], a more general theory of zigzag persis-
tence was developed [5l @] 18] [T9] using a more compli-
cated algorithm. Zigzags gave a way to analyze spaces
that did not grow monotonically; they could alternately
grow and shrink such as by growing the scale and then
removing points [22]. A variant of this techniques was
first applied for specific scales by Chazal and Oudot
in work on manifold reconstruction [9] and was imple-
mented as a full zigzag by Morozov in his Dionysus li-
brary [12]. Later, Sheehy gave a zigzag for Rips filtra-
tions that came with guaranteed approximation to the
persistent homology of the unsparsified filtration [21].
Other later works gave various improvements and gen-
eralizations of sparse zigzags [20], 17, [T} 2].

2 Background

Distances and Metrics. Throughout, we will assume
the input is a finite point set P in R endowed with some
convex metric d. A closed ball with center ¢ and radius
r will be written as ball(c,7) = {x € R¥d(x,c) < 7}.
For illustrative purposes, we will often draw balls as
Euclidean (¢3) balls.

For a non-negative a € R, the a-offsets of P are
defined as

P = U ball(p, «).
peEP

The sequence of offsets as a ranges from 0 to oo is called
the offsets filtration {P%}.

The doubling dimension of a metric space is logs 7,
where 7 is the maximum over all balls B, of the min-
imum number of balls of half the radius of B required
to cover B. Metric spaces with a small constant dou-
bling dimension are called doubling metrics. Such met-
rics allow for packing arguments similar to those used
in Euclidean geometry.

Simplicial Complexes. A simplicial complex K is a
family of subsets of a vertex set that is closed under
taking subsets. The sets 0 € K are called simplices and
|o| — 1 is called the dimension of o. A nested family
of simplicial complexes is called a simplicial filtration.
Often the family of complexes will be parameterized by
a nonnegative real number as in {K%},>¢. Here, the
filtration property guarantees that o < (8 implies that
K® C KPB. In this case, the value of o for which a
simplex first appears is called its birth time, and so, if
there is a largest complex K in the filtration, the whole
filtration can be represented by K% and the birth time
of each simplex. For this reason, simplicial filtrations
are often called filtered simplicial complez.

Persistent Homology. Homology is an algebraic tool
for characterizing the connectivity of a space. It cap-
tures information about the connected components,

holes, and voids. For this paper, we will only consider
homology with field coefficients and the computations
will all be on simplicial complexes. In this setting, com-
puting homology is done by reducing a matrix D called
the boundary matrix of the simplicial complex. The
boundary matrix has one row and column for each sim-
plex. If the matrix reduction respects the order of a
filtration, i.e. columns are only combined with columns
to their left, then the reduced matrix also represents
the so-called persistent homology of the filtration. Per-
sistent homology describes the changes in the homology
as the filtration parameter changes and this information
is often expressed in a barcode (See Fig. [2]). Barcodes
give topological signatures of a shape [14].

Figure 2: A filtration and its barcode.

Each bar of a barcode is an interval encoding the lifes-
pan of a topological feature in the filtration. We say
that a barcode Bj is a (multiplicative) c-approximation
to another barcode B if there is a partial matching be-
tween B; and Bg such that every bar [b, d] with d/b > ¢
is matched and every matched pair of bars [b,d], [V/, d']
satisfies max{b/t’, b’ /b,d/d’',d’'/d} < ¢. A standard re-
sult on the stability of barcodes [8] implies that if two
filtrations {F'*} and {G*} are c-interleaved in the sense
that F@/¢ C G* C F°, then the barcode of {F*} is a
c-approximation to {G*}.

Nerve Complexes and Filtrations. Let U =
{Ui,...,U,} be a collection of closed, convex sets. Let
(JU denote the union of the sets in U, ie. JU :=
Ui, Ui;. We say that the set U is a cover of the space
JU. The nerve of U, denoted Nrv(U) is the abstract
simplicial complex defined as

Nrv(U) := {1 C| (U # w} :

icl

This construction is illustrated in Fig[3] The Nerve The-
orem [16, Cor. 4G.3] implies that Nrv({) is homotopy
equivalent to (JU.

Similarly, one can construct a nerve filtration from
a cover of a filtration by filtrations. Let U =
{{U?},...{US}} be a collection of filtrations param-
eterized by real numbers such that for each ¢ € [n] and
each a > 0, the set U is closed and convex. Let U“
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Figure 3: The nerve has an edge for each pairwise in-
tersection, a triangle for each 3-way intersection (right),
etc.

to denote the set {Uy,...,U%}. As before, the Nerve
Theorem implies that | JU“ is homotopy equivalent to
Nrv(U®). The Persistent Nerve Lemma [9] implies that
the filtrations {|JU}o>0 and {Nrv(U*)}4>0 have iden-
tical persistent homology.

Cech and Rips Filtrations. A common filtered nerve
is the Cech filtration. It is defined as {C,(P)}, where

Co(P) := Nrv{ball(p;, @) | i € [n]}.

Notice that this is just the nerve of the cover of the a-
offsets by the a-radius balls. Thus, the Persistent Nerve
Lemma implies that {P*} and {C,(P)} have identical
persistence barcodes.

A similar filtration that is defined for any metric is
called the (Vietoris-)Rips filtration and is defined as
{Rw(P)}, where

Ra(P):={J < [n]| g}g{;d(pi,pj) < 2a}.

Note that if d is the max-norm, f,, then R,(P) =
Co(P). Moreover, because every finite metric can be
isometrically embedded into /., every Rips filtration is
isomorphic to a nerve filtration.

Greedy Permutations. Let P be a set of points in
some metric space with distance d. A greedy permu-
tation of P goes by many names, including landmark
sets, farthest point sampling, and discrete center sets.
We say that P = {p1,...,pn} is ordered according to a
greedy permutation if each p; is the farthest point from
the first ¢ — 1 points. We let p; be any point. For-
mally, let P, = {p1,...,p;} be the ith prefiz. Then, the
ordering is greedy if and only if for all i € {2,...,n},

d(pi, Pi—1) = leealg(d(p, P_4).

For each point p;, the value \; := d(p;, Pi—1) is known
as the insertion radius. By convention, we set A\ = c0.
It is well-known (and easy to check) that P; is a \;-
net in the sense that it satisfies the conditions: for all
distinct p,q € P;, d(p,q) > \; (packing) and P C PZ)‘
(covering).

Figure 4: Left: two growing balls trace out cones in
one dimension higher. Center: One of the cones has
a maximum radius. Right: Limiting the height of one
cone guarantees that the top is covered.

3 Perturbed Distances

A convenient first step in making a sparse version of
the Cech filtration is to “perturb” the distance. Given
a greedy permutation, we perturb the distance function
so that as the radius increases, only a sparse subset
of points continues to contribute to the offsets. This
can most easily be viewed as changing the radius of
the balls slightly so that some balls will be completely
covered by their neighbors and thus will not contribute
to the union. Fix a constant € < 1 that will control
the sparsity. As we will show in Lemma [I] at scale «,
there is an ea-net of P whose perturbed offsets cover
the perturbed offsets of P. Assuming the points P =
{p1,...,pn} are ordered by a greedy permutation with
insertion radii A1, ..., \,, we define the radius of p; at
scale «a as

(@) @ ifa<(l+4e)/e
Tri\&) =
Ai(1+¢€)/e otherwise.

The perturbed a-offsets are defined as

P = U ball(p;, r;()).

i€[n]

To realize the sparsification as described, we want to
remove balls associated with some of the points as the
scale increases. This is realized by defining the a-ball
for a point p; € P to be

ball(p;, () if a < \i(1+¢)?/e
bZ(Oé) = .
0 otherwise.
The usefulness of this perturbation is captured by the
following covering lemma, which is depicted in the tops
of the cones in Fig.

Lemma 1 (Covering Lemma) Let P = {p1,...,pn}
be a set of points ordered by a greedy permutation with
insertion radit A1,..., . For any o, > 0, and any
p; € P, there exists a point p; € P such that

1. if B> « then bj(o) C b;(B), and
2. 4f B> (1+¢)a, then ball(p;, ) C b;(5).
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Proof. Fix any p; € P. We may assume that 8 >
Aj(1 4 €)?/e, for otherwise, choosing p; = p; suffices
to satisfy both clauses, the first because b;(a) C b;(5)
and the second because ball(p;, ) = b;j(a) C b;(5).
This assumption is equivalent to the assumption that
bi(B) = 0.

By the covering property of the greedy permutation,
there is a point p; € P such that d(p;, p;) <ef/(1+¢)
and A\; > ¢B/(1 +¢). It follows that r;(8) = 8 and
bi(B) = ball(p;, B). Recall that Ay = oo by convention,
50 b1 () # 0, and for large values of 3, choosing p; = p;
suffices.

To prove the first clause, fix any point z € b;(«). By
the triangle inequality,

d(z,p;) < d(z,pj) +d(pi,pj) <rj(e) +eB/(1+¢)
<N(14¢)/e+eB/(14¢) < B=riB).

So, x € b;(f) and thus, b;(«) C b;(5) as desired.
To prove the second clause of the lemma, fix any x €
ball(p;, ). By the triangle inequality,

d(xapz) S d(l’,p]) + d(piap]) S [e% +55/(1 =+ 6)
<B/(1+e)+eB/(1+e) =ri(B)

So, as before, x € b;(3) and thus, ball(p;,a) C b;(B) as
desired. 0

Corollary 2 Let P = {p1,...,pn} be a set of points
ordered by a greedy permutation with insertion radii
AlsoosAn. Forall o > 0, P* = |, bi(a) and P* C
P C ﬁ(l—&-s)a.

A proof may be found in the full paper [6]. Corollary
implies the following proposition using standard results
on the stability of persistence barcodes [g].

Proposition 3 The persistence barcode of the per-
turbed offsets {P*}a>0 is a (1 + €)-approzimation to
the persistence barcode of the offsets {P“}a>0.

4 Sparse Filtrations

The sparse Cech compler is defined as Q¢ :=
Nrv{b;(«) | ¢ € [n]}. Notice that because b;(a) = 0
unless A; is sufficiently large compared to «, there are
fewer vertices as the scale increases. This is the desired
sparsification. Unfortunately, it means that the set of
complexes {Q*} is not a filtration, but this is easily
remedied by the following definition. The sparse Cech
filtration is defined as {S®}, where

S*:=J @ = | Nev{:i(9) | i € [n]}.

<o <o

This definition makes it clear that the sparse complex
is a union of nerves, but it not obvious that it has the

same persistent homology as the filtration defined by
the perturbed offsets P* := |, bi(c). For such a state-
ment, it would be much more convenient if {S*} was
itself a nerve filtration rather than a union of nerves,
in which case the Persistent Nerve Lemma could be ap-
plied directly. In fact, this can be done by adding an
extra dimension corresponding to the filtration param-
eter extending the balls b;(«) into the perturbed cone
shapes

U= (0:(8) x {3}).

<a

These sets, depicted in Figs.[d and[5} allow the following
equivalent definition of the complexes in the sparse Cech
filtration.

SY:=Nrv{U?|ié€n]}.

Theorem 4 The persistence barcode of the sparse
nerve filtration {S“}a>0 is a (1 + €)-approzimation to
the persistence barcode of the offsets {P*}a>0.

Proof. For all ¢, the set U is convex because r; is con-
cave (see the full paper [6] for a proof). It follows
that the sets U satisfy the conditions of the Persis-
tent Nerve Lemma. So, {S*} has the same persistence
barcode as the filtration {B*}, where B* :=J, U".

>

Figure 5: The collection of cones B at two different
scales. The top of B“ is the union of (perturbed) balls.

The Covering Lemma implies that the linear projec-
tion of B* to P“ that maps (z,0) to x is a homotopy
equivalence as each fiber is simply connected. More-
over, the projection clearly commutes with the inclu-
sions B* — Bf and P* < PP, from which, it follows
that Pers{P*} = Pers{B®} = Pers{S*}. So, the claim
now follows from Proposition O

5 Algorithms

In this section, we present an algorithm to construct the
sparse filtration. In previous work, it was shown how to
use metric data structures [I5] to compute the sparse
Rips filtration in O(nlogn) time [21] when the doubling
dimension is constant. The same approach also works
for the sparse nerve filtrations described here. However,
in our implementation, we found it to be efficient to
construct the edge set in O(n?) time and then find the
remaining simplices in linear time.

In order to find the edges in the sparse filtration, we
consider every two points and determine whether their
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corresponding balls have a common intersection. If the
balls intersect, it returns the birth time of the corre-
sponding edge and oo otherwise. We store every edge as
a directed edge, which is used to find other k-simplices.
Edges are directed from smaller to larger insertion ra-
dius. This will allow us to charge the simplices we find
to their vertex of minimum insertion radius.

Let E(v) be the vertices adjacent to a vertex v
with larger insertion radius. To find a k-simplex for
k > 1 containing a vertex v, we consider all subsets
{u1,...,ur} of k vertices in E(v). If {v,uq,...,ur}
forms a (k+1)-clique, we check the clique to see whether
it creates a k-simplex and compute its birth time. The
birth time of a k-simplex ¢ in a nerve filtration is the
minimum « such that U # 0. If no such a exists,
then we define the birth time to be co. We assume
the user provides a method, SIMPLEXBIRTHTIME, to
compute birth times for their metric that runs in time
polynomial in k. This function takes a (k4 1)-clique as
input. If at some scale «, the corresponding balls have
a common intersection, it returns the minimum such «,
otherwise, it returns oo indicating the (k + 1)-clique is
not a k-simplex in the sparse filtration.

For the case of Rips filtrations (i.e. fs), SIM-
PLEXBIRTHTIME(c) needs to compute the maximum
birth time of the edges and compare it to min,,c, Ai(1+
€)?/e (the first time t after which some p; € o has
bi(t) = ). For {s, the corresponding computation is
a variation of the minimum enclosing ball problem.

Algorithm [I]finds the k-simplices and birth times in a
sparse filtration. Here, G = (V, E) is a directed graph,
and the output S is the set of pairs (o,t), where o is a
k-simplex with birth time ¢.

Algorithm 1 Find all k-simplices and birth times
1: procedure FINDSIMPLICES(G = (V, E), k)
2 S0
3 for all v € V do
4 for all {ui,...,ux} C E(v) do
5: if {v,u1,...,u} is a (k + 1)-clique then
6:
7
8
9

o+ {v,ur,...,up}
t <—SIMPLEXBIRTHTIME(0)
if t < 0o then

S <+ SU(o,t)

10: return S

Theorem 5 Given the edges of a sparse filtration,
Algorithm [1] finds the k-simplices of {S“} in ((1 +
£)2/)O%kP)n time, where p is the doubling dimension
of the input metric.

Proof. In Algorithm [I for every vertex v in the di-
rected graph G, there are (‘E,(f)l) subsets with size k.
Therefore, if we find an upper bound A on the number

of adjacent vertices for all v € V| the total running time
of the algorithm will be O(AFn).

In the directed graph G, a vertex p; is adjacent to
vertex p; if the insertion radius of p; is less than insertion
radius of p; and their corresponding balls intersect at
some scale a, ie. bi(a) Nbj(a) # 0. We know that
Ai < A, and also they intersect before p; disappears, so

bi(A(1+)2/2) Ny (M1 +€)2/e) # 0.
The distance between p; and p; is bounded as follows.

d(pi,p;) < ri(Ni(1+e)?/e) + (N1 +€)?fe)
<N(1+e)/e+N(1+¢e)* /e <20(1 +¢)* /e

Thus, all adjacent vertices to p; lie in a ball with cen-
ter p; and radius 2\;(1 + €)?/e. Moreover, the in-
sertion radii of the neighbors are all at least \;, so
by a standard packing argument for doubling metrics,
|E(pi)| = (1 +¢)?/e)°®). Consequently, the running
time of this algorithm will be ((1 + £)2/e)0*P)n. O

6 Removing Vertices

Because the sparse filtration is a true filtration, no ver-
tices are removed. When the cone is truncated, no new
simplices will be added using that vertex, but it is still
technically part of the filtration. The linear-size guar-
antee is a bound on the total number of simplices in the
complex. Thus, by using methods such as zigzag per-
sistence or simplicial map persistence to fully remove
these vertices when they are no longer needed cannot
improve the asymptotic performance. Still, it may be
practical to remove them (see [2]). A full theoretical
or experimental analysis of the cost tradeoff of using a
heavier algorithm to do vertex removal is beyond the
scope of this paper.

In this section, we show that the geometric construc-
tion leads to a natural choice of elementary simplicial
maps (edge collapses) which all satisfy the so-called link
condition. In the persistence by simplicial maps work
of Dey et al. [11] and Boissonat et al. [I], a key step in
updating the data structures to contract an edge is to
first add simplices so that the so-called Link Condition
is satisfied. The link of a simplex ¢ in a complex K is
defined as Lko = {r\ o | 7 € K and ¢ C 7}. That
is, the link ¢ is formed by removing the vertices of o
from each of its cofaces. An edge {u,v} € K satisfies
the Link Condition if and only if

Lk {u,v} = Lk {u} N Lk {v}.

Dey et al. [I0] proved that edge contractions induce ho-
motopy equivalences when the link condition is satisfied.
Thus, it gives a minimal local condition to guarantee
that the contraction preserves the topology. More re-
cently, it was shown that such a contraction does not
change the persistent homology [I1].
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Proposition 6 If (P,d) is a finite subset of a convex
metric space and { S} is its corresponding sparse filtra-
tion, then the last vertex p, has a neighbor p; such that
the edge {pn,p;} € S< satisfies the link condition, where
a = A(1+¢)%/e and N, is the insertion radius of py,.

Proof. It follows directly from the definition of a link
that Lk {u,v} C Lk {u}NLk {v} for all edges {u,v}. By
the Covering Lemma (Lemma [1f), we know that there
exists a p; € P such that b, (a) C b;(«). Thus, it suffices
to check that Lk {i} NLk {n} C Lk {i,n}. Because the
vertices are ordered according to a greedy permutation,
An > A for all p; € P. It follows that a simplex J € §¢
if and only if ;¢ ; bj(a) # 0.

Let J be any simplex in Lk {i} "Lk {n}. So,i,n ¢ J
and (¢ suqny bj(a) # 0. Because by, (o) Nb; () = by (),
it follows that (;c .y bj(a) # 0. Thus, we have
J € Lk {i,n} as desired. O

7 Conclusion

In this paper, we gave a new geometric perspective
on sparse filtrations for topological data analysis that
leads to a simple proof of correctness for all convex
metrics. By considering a nerve construction one di-
mension higher, the proofs are primarily geometric and
do not require explicit construction of simplicial maps.
This geometric view clarifies the non-zigzag construc-
tion, while also showing that removing vertices can be
accomplished with simple edge contractions.
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