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1. Introduction

Nerve complexes are discrete structures used
for computing topological information about a
continuous space, but they often suffer from ex-
ponential blowup in size. Sparsifying these com-
plexes allows one to retain most topological in-
formation while maintaining a significantly smaller
complex. We present a geometric perspective on
sparse filtrations, viewing them as a nerve of geo-
metric cones, rather than a union of nerves. This
new perspective leads to simpler algorithms, sim-
pler proofs with more general results. We also
provide the runtime for our construction and prove
that vertex removal can be implemented as a se-
quence of edge collapses. A video illustrating
this approach is available [2].

2. Background

2.1. Distances and Metrics. The input is a
finite set P ⊂ Rd with a convex metric d, e.g.
the Euclidean or Lp metric (for p ≥ 1). Let

ball(c, r) = {x ∈ Rd | d(x, c) ≤ r} denote the
closed metric ball centered at c with radius r.
For all α ≥ 0, the α-offsets of P are defined
as Pα =

⋃
p∈P ball(p, α). The family of offsets

parameterized by α is called the offset filtration,
denoted {Pα}α≥0. It is a filtration because Pα ⊆
P β if α ≤ β.

Figure 1. Left to right: point
set, offsets and nerve complex

2.2. Persistent Homology. The homology of
a space tells one the number of holes in each di-
mension in the space. Homology is useful for
characterizing spaces topologically and is invari-
ant under homeomorphisms. Given an offset fil-
tration {Pα}α≥0, each set in the filtration has
its own homology. The differences between the
homology of Pα and P β for α < β indicate at
what scales features are “born” and “die”. A
feature’s lifespan can be represented by an inter-
val [b, d] where b is the birth time and d is the
death time. Collectively, the lifespan intervals of
all features is the persistence barcode and the in-
formation provided is the persistent homology of
the filtration. We say the persistent homology
of two spaces are c-approximate if we can pair
each’s intervals such that the birth and death
times respectively are within a multiplicative fac-
tor c and those for which d/b < c can be ignored.

2.3. Simplicial Complexes and Nerves. A
simplicial complex is a collection of subsets of
a vertex set that is closed under taking subsets.
The nerve of a collection of closed, convex sets
U = {U1, . . . , Un} is a simplicial complex defined
as Nrv(U) := {I ⊆ [n] |

⋂
j∈I Uj 6= ∅}. The nerve

has as a vertex for each set, an edge for each two-
way intersection, a triangle for each three way in-
tersection etc. In the case of an offset filtration,
Pα is covered by {ball(p, α) | p ∈ P}. Each ball
grows throughout the filtration, and by taking
the nerve of the cover of each Pα, we get a filtra-
tion of nerves. Given a collection of filtrations
of closed, convex sets U = {{Uα1 }, . . . , {Uαn }}, ,
where Uα := {Uα1 , . . . , Uαn }, the Persistent Nerve
Lemma [3] implies the filtrations {

⋃
Uαi }α≥0 and

{Nrv(Uα)}α≥0 have identical persistent homol-
ogy i.e. their barcodes are the same.

2.4. Greedy Permutations. Given a set P of
n points in a metric space with metric d, we
say that P = {p1, . . . , pn} is a greedy permuta-
tion of P if for all i ∈ {1, . . . , n}, d(pi, Pi−1) =
maxp∈P d(p, Pi−1), where Pi = {p1, . . . , pi}. The
insertion radius of a point pi is the value λi :=
d(pi, Pi−1). By convention, λ1 = ∞. Greedy
permutations have the nice property that Pi is
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Figure 2. The cones of the offsets

a λi-net—for all p, q ∈ Pi, d(p, q) ≥ λi [packing]

and P ⊆ P λii [covering].

3. Results

3.1. Sparsification. We consider a point set P =
{p1, . . . , pn} ordered by a greedy permutation.
We fix a sparsification constant ε ∈ (0, 1). The
radius of the ball at pi is limited to λi(1 + ε)/ε
and so the radius at scale α is defined as ri(α) =
min{α, λi(1 + ε)/ε}. The perturbed α-offsets are

defined as P̃α :=
⋃
i∈[n] ball(pi, ri(α)). The spar-

sification process is induced by the α-balls, which
are defined as bi(α) = ball(pi, ri(α)) if α ≤ λi(1+
ε)2/ε, and empty otherwise. There are far fewer
intersections between α-balls and so the result-
ing nerve will be much smaller.

Proposition 1. The persistence barcode of the
perturbed offsets {P̃α}α≥0 (1 + ε)-approximates
the persistence barcode of the offsets {Pα}α≥0.

3.2. Sparse filtration. In previous work, sparse
filtrations were defined as a union of nerves at
different scales. We provide a simpler geomet-
ric view of a sparse filtration as a nerve of cones.
We add another spatial dimension to the α-balls,
viewing α as the height of a cone. Formally, the
perturbed cone for pi is the set Uαi :=

⋃
δ≤α(bi(δ)×

{δ}) (see Fig. 2). This leads to an equivalent
definition of the sparse nerve filtration, {Sα} =
{Nrv{Uαi }}α≥0.

Theorem 2. The persistence barcode of the sparse
nerve filtration {Sα}α≤0 is a (1+ε)-approximation
to the persistence barcode of the offsets {Pα}α≥0.

3.3. Algorithmic construction. In our full pa-
per [1], we create a data structure that allows in-
sertion of points given a greedy permutation. We
define the predecessor of pi as the point pred(pi)
such that λi = d(pi,pred(pi)). With this data
structure one can compute the edges in linear
time. From the edges, one can find the k-simplices

in the standard way: For each point p, check if
the cones of each k-tuple of adjacent points along
with the cone of p intersect at some α <∞, and
if so the simplex defined by this (k+1)-tuple is in
the filtration. With the simplex birth times and
the maximal complex, we know the sparse nerve
filtration. Theorem 3 summarizes the runtime of
our algorithm.

Theorem 3. Given a finite metric (P,d) and a
greedy permutation of P with pred(pi) for each
pi ∈ P , one can find the k-simplices of {Sα} in

κO(kρ)n time, where ρ is the doubling dimension
of d, κ = (ε2 + 3ε+ 2)/ε, and ε ∈ (0, 1).

3.4. Removing vertices. Since the sparse fil-
tration is a filtration, we do not remove the ver-
tices when we delete the α-balls at some scale.
In practice, one may wish to remove the vertices
and we prove this is possible using an operation
called an edge contraction. Dey et al.[4] prove
that if an edge satisfies the so-called Link Con-
dition, then the topology of a simplicial complex
is unchanged by contracting that edge. Theo-
rem 4 uses this result and implies vertices can
be removed by edge contractions as the scale α
increases.

Theorem 4. If (P,d) is a finite subset of a con-
vex metric space and {Sα} is its sparse filtration,
then the last vertex pn inserted has a neighbor pi
such that the edge [pnpi] ∈ Sα satisfies the link
condition, where α ≥ λi(1 + ε)2/ε and λn is the
insertion radius of pn.
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