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Abstract

We generalize the local-feature size definition of adap-
tive sampling used in surface reconstruction to relate
it to an alternative metric on Euclidean space. In the
new metric, adaptive samples become uniform samples,
making it simpler both to give adaptive sampling ver-
sions of homological inference results and to prove topo-
logical guarantees using the theory of critical points to
distance functions.

1 From Surface Reconstruction to Homology Infer-
ence

To reconstruct a surface from a point set, one needs the
sample to be sufficiently dense with respect to not just
the local curvature of the surface, but also the distance
to parts of the surface that are close in the embedding
but far in geodesic distance. Otherwise, algorithms have
no way of identifying which geometrically close sample
points correspond to local neighborhoods in the sur-
face. Adaptive sampling with respect to the so-called
local feature size as introduced by Amenta and Bern [2]
neatly characterizes such “good” samples and was then
used in many later works on surface reconstruction with
topological guarantees [7]. Such adaptive samples are in
contrast to uniform samples for which a single parame-
ter determines the density, usually driven by minimum
of the local feature size and resulting in a much larger
sample.

Later work on generalizations of surface reconstruc-
tion and homology inference related the topology of
unions of balls centered at a sample X̂ near the un-
known set X to the topology of X itself. A union of
balls with a fixed radius can be viewed as a sublevel
set of the distance function to X̂. If we have an adap-
tive sample, then we would like to scale the radii of the
balls as well. However, if the sample is adaptive with
respect to a local feature size defined as the distance to
an unknown set L, another approximation L̂ near L is
necessary. Indeed, one interpretation of some Voronoi-
based surface reconstruction algorithms is that first an
approximation L̂ to the medial axis L is computed from
the Voronoi diagram of the sample X̂ of the unknown
surface X.

We present a new perspective on adaptive samples.
For any pair of disjoint, compact sets X and L, we de-

fine a metric on Rd \L with the property that a uniform
sample of X in the new metric corresponds to an adap-
tive sample in the Euclidean metric. This new metric
can also be extended to an arbitrarily close Riemannian
metric over the same domain. Our main motivation
is to connect adaptive sampling theory to the critical
point theory of distance functions used extensively to
prove topological guarantees in topological data analy-
sis [9, 4, 3]. That theory gives natural topological equiv-
alences between sublevel sets of distance functions to
compact sets in Riemannian metrics. Thus, we propose
to use this new metric as the underlying ideal object
and then relate it to a union of Euclidean balls con-
structed from approximations to X and L. Our metric
can be viewed as a smoothed version of an adaptive met-
ric used by Clarkson [5]. Our new formulation reveals
connections with recent work on path planning [10, 1]
and density-based distances [6].

2 Background

Let L and X be compact subsets of Rd with respect to
the Euclidean metric. For x, y ∈ Rd, define Path(x, y)
to be the set of bounded piecewise-C1 paths from x
to y, parametrized by Euclidean arc-length. Similarly,
Path(x, S) :=

⋃
s∈S

Path(x, s) denotes all paths from x to

a set S.

For any compact set L ⊆ Rd, define fL(·) : Rd →
R by fL(x) := min`∈L ‖x − `‖. Define dL(x, y) :=
minγ∈Path(x,y)

∫
γ

dz
fL(z) . Note that dL is a Riemannian

metric on Rd \ L. The length of a unit-speed path
γ : [0, a]→ Rd is denoted as |γ| :=

∫
γ
dz =

∫ a
0
dt.

For y ∈ Rd, define fLX(y) := dL(y,X) =

minx∈X dL(y, x), and f̂LX(y) := minx∈X
‖y−x‖
fL(x) .

Note that fLX(·) is a distance function, while f̂LX(·) is
not. The latter function can be interpreted as a first-
order approximation of the former.

The two sets resulting from the level sets of these
functions are defined below, with the goal being to ap-

proximate ALX(·) by BL̂
X̂

(·), where L̂ and X̂ are approx-
imations of L and X respectively.

Definition 1 For any compact set X ⊂ Rd \ L, for
some compact set L ⊂ Rd, the α-offsets with respect to
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dL are

ALX(α) := {x ∈ Rd | fLX(x) ≤ α}.

Note the distance function fL(·) can be transformed
into an arbitrarily close smooth function f̃L(·) [8], yield-
ing a Riemannian metric d̃L defined in an identical man-
ner as dL. From this, one has corresponding α-offsets
ÃLX(α) that are arbitrarily close to AXL (α).

Definition 2 For any compact set X ⊂ Rd \ L, for
some compact set L ⊂ Rd, the approximate α-offsets
with respect to dL are

BLX(α) := (f̂LX)−1[0, α] =
⋃
x∈X

ball(x, αfL(x)).

A useful property of fLX(·) is that it a 1-Lipschitz
function. In general, a function f between two metric
spaces (X,dX) and (Y,dY ) is said to be k-Lipschitz if
for all x, y ∈ X, dY (f(x), f(y)) ≤ kdX(x, y).

Lemma 3 fLX(·) is a 1-Lipschitz function from
(Rd,dL) to R.

Proof. Fix any a, b ∈ Rd. There exists x ∈ X and γ1 ∈
Path(a, x) such that fLX(a) =

∫
γ1

dz
fL(z) . Likewise, there

exists γ2 ∈ Path(a, b) such that dL(a, b) =
∫
γ2

dz
fL(z) .

This implies γ1 + γ2 ∈ Path(b,X), where + in this
case is the concatenation of paths in the usual sense.

Thus fLX(b) ≤
∫
γ1+γ2

dz
fL(z) ≤ fLX(a) + dL(a, b). By

symmetry of a and b, we obtain the other bound and
we are done. �

We can extend fLX(·), a function measuring the dis-
tance from a point to a set, to the resulting Hausdorff
distance, which is a metric between compact sets. This
metric is useful for stating bounds on the quality, or
uniformity, of a sample near a set.

Definition 4 The Hausdorff distance between two
compact sets A,B ∈ (Rd,dL) is defined as

dLH(A,B) = max{min
a∈A

fLB(a),min
b∈B

fLA(b)}

or equivalently,

dLH(A,B) = min{r | A ⊆ BrL and B ⊆ ArL}.

Using an assumption on the Hausdorff distance be-
tween a compact set and a sample of it, Lemma 5 shows
their α-offsets can be included within each other at par-
ticular scales.

Lemma 5 Consider X̂,X ⊆ Rd \ L be such that

dLH(X̂,X) ≤ δ. Then for all α ≥ 0, ALX(α) ⊆ AL
X̂

(α+δ)

and AL
X̂

(α) ⊆ ALX(α+ δ).

Proof. Fix y ∈ ALX(α). By definition fLX(y) ≤ α, which
implies that there exists x ∈ X such that dL(x, y) ≤ α.

dLH(X̂,X) ≤ δ which implies that for all x ∈ X, fL
X̂

(x) ≤
δ. Now by Lemma 3, fL

X̂
(y) ≤ fL

X̂
(x)+dL(x, y) ≤ δ+α,

implying y ∈ AL
X̂

(α+δ). By a symmetric argument, the
other statement holds. �

The following is the definition of an adaptive sample
we use, known as an ε-sample.

Definition 6 Given compact set L ⊂ Rd and compact
sets X, X̂ ⊂ Rd \ L such that X̂ ⊆ X, we say that X̂ is
an ε-sample of X, for ε ∈ [0, 1), if for all x ∈ X, there

exists p ∈ X̂ such that ‖x− p‖ ≤ εfL(x).

This definition is closely related to that of the approx-
imate α-offsets, because if X̂ is an ε-sample of X, then
for all x ∈ X, ball(x, εfL(x)) ∩ X̂ 6= ∅.

3 Adaptive Sampling

In this section, we prove that a uniform sample in the
induced metric corresponds to an adaptive sample in the
Euclidean metric and vice versa. The key to this proof
is the following lemma about the relationship between
the two metrics when just considering two points. This
lemma will also be used for the more elaborate inter-
leaving results of Section 4.

Lemma 7 Let L ⊂ Rd be a compact set and let a, b ∈
Rd \ L. Then, the following two statements hold for all
δ ∈ [0, 1).

(i) If dL(a, b) ≤ δ then ‖a−b‖fL(a) ≤
δ

1−δ .

(ii) If ‖a−b‖fL(a) ≤ δ then dL(a, b) ≤ δ
1−δ .

Proof. To prove (i), we assume dL(a, b) ≤ δ. Let γ be
the path in Path(a, b) such that dL(a, b) =

∫
γ

dz
fL(z) < δ.

Then we have the following inequalities following from
the Lipschitz property of fL.

|γ| =
∫
γ

dz = (fL(a) + |γ|)
∫
γ

dz

fL(a) + |γ|

≤ (fL(a) + |γ|)
∫
γ

dz

fL(z)

≤ (fL(x) + |γ|)δ

It follows that |γ| ≤ δ
1−δfL(x). Because ‖a − b‖ is the

length of the shortest path between a and b in the Eu-
clidean metric, we conclude ‖a− b‖ ≤ |γ| ≤ δ

1−δfL(x).

Next we prove (ii). Assume ‖a−b‖fL(a) ≤ δ. For all points

z in the straight line segment ab,

fL(z) ≥ fL(a)−‖a−z‖ ≥ fL(a)−‖a−b‖ ≥ (1−δ)fL(a).
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This implies the following inequality.

dL(a, b) = inf
γ∈Path(a,b)

∫
γ

dz

fL(z)

≤
∫
ab

dz

fL(z)

≤ 1

(1− δ)fL(a)

∫
ab

dz

=
‖a− b‖

(1− δ)fL(a)

≤ δ

1− δ
.

�

We can now state the main theorem relating adaptive
samples in the Euclidean metric to uniform samples in
the metric induced by a set L.

Theorem 8 Let L and X be compact sets, let X̂ ⊂ X
be a sample, and let ε ∈ [0, 1) be a constant. If X̂ is
an ε-sample of X with respect to the distance to L, then
dLH(X, X̂) ≤ ε

1−ε . Also, if dLH(X, X̂) ≤ ε < 1
2 , then X̂

is an ε
1−ε -sample of X with respect to the distance to L.

Proof. Given x ∈ X, there exists p ∈ X̂ such that
‖x − p‖ ≤ εfL(x). By Lemma 7, dL(x, p) ≤ ε

1−ε , so

for all x ∈ X, fL
X̂

(x) ≤ ε
1−ε . As X̂ ⊆ X, this proves

dLH(X̂,X) ≤ ε
1−ε .

dLH(X̂,X) ≤ ε < 1
2 implies that for all x ∈ X,

fL
X̂

(x) ≤ ε, thus there exists p ∈ X̂ such that dL(x, p) ≤
ε, and thus by Lemma 7 ‖x − p‖ ≤ ε

1−εfL(x). Since

ε < 1
2 , then ε

1−ε < 1, so X̂ is an ε
1−ε -sample of X. �

4 Interleaving

A filtration is a nested family of sets. In this paper, we
consider filtrations F parameterized by a real number
α ≥ 0 so that F (α) ⊂ Rd and whenever α < β we
have F (α) ⊆ F (β). Often, our filtrations are sublevel
filtrations of a real valued function f : Rd → R. The
sublevel filtration F corresponding to the function f is
the defined as

F (α) := {x ∈ Rd | f(x) ≤ α}.

Definition 9 A pair of filtrations (F,G) is (h1, h2)-
interleaved in an interval (s, t) if F (r) ⊆ G(h1(r))
whenever r, h1(r) ∈ (s, t) and G(r) ⊆ F (h2(r)) when-
ever r, h2(r) ∈ (s, t). We require that the functions
h1, h2 be nondecreasing in (s, t).

The following lemma gives us an easy iterative way
to combine pairs of interleavings.

Lemma 10 If (F,G) is (h1, h2)-interleaved in (s1, t1),
and (G,H) is (h3, h4)-interleaved in (s2, t2), then (F,H)
is (h3 ◦ h1, h2 ◦ h4)-interleaved in (s3, t3), where s3 =
max{s1, s2} and t3 = min{t1, t2}.

Proof. If r, h3(h1(r)) ∈ (s3, t3), then we have F (r) ⊆
G(h1(r)) ⊆ H(h3(h1(r))). Similarly, if r, h2(h4(r)) ∈
(s3, t3), then H(r) ⊆ G(h4(r)) ⊆ F (h2(h4(r))). �

4.1 Approximating X with X̂

Ultimately, the goal is to relate ALX , the offsets in the in-

duced metric, to BL̂
X̂

, the approximate offsets computed

from approximations (or samples) to both X and L.
This relationship will be given by an interleaving that
is built up from an interleaving for each approximation
step. For each of the following lemmas, let L, L̂ ⊂ Rd
and X, X̂ ⊂ Rd \ (L ∪ L̂) be compact sets.

Lemma 11 If dLH(X̂,X) ≤ ε, then (ALX , A
L
X̂

) is

(h1, h1)-interleaved in (0,∞), where h1(r) = r + ε.

Proof. This lemma is a reinterpretation of Lemma 5 in
the interleaving notation. �

4.2 Approximating the Induced Metric

It is much easier to use a union of Euclidean balls to
model the sublevel sets of the distance function fLX . Be-
low, we show that this is a reasonable approximation.
The following results may also be viewed as a strength-
ening of the adaptive sampling result of the previous
section (Theorem 8).

Lemma 12 Given compact set L ⊂ Rd, and compact
set X ⊂ Rd \ L, for r ∈ [0, 1), ALX(r) ⊆ BLX( r

1−r ), and

for r ∈ [0, 12 ), BLX(r) ⊆ ALX( r
1−r ).

Proof. Take y ∈ ALX(r) so that fLX(y) ≤ r. Thus there
exists x ∈ X such that dL(x, y) ≤ r. By Lemma 7, this
implies that ‖x − y‖ ≤ r

1−rfL(x), which implies that

y ∈ BLX( r
1−r ).

Consider y ∈ BLX(r). Thus y ∈ ball(x, rfL(x)), for
some x ∈ X, so ‖x− y‖ ≤ rfL(x). Applying Lemma 7,
we have then have that dL(x, y) ≤ r

1−r , and as fLX(y) ≤
dL(x, y), y ∈ ALX( r

1−r ). �

Corollary 13 The pair (AL
X̂
, BL

X̂
) are (h2, h2)-

interleaved in (0, 1), where h2(r) = r
1−r .

Proof. This follows from combining the results of
Lemma 12 into the interleaving notation.

�
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4.3 Approximating L with L̂

Usually, the set L is unknown at the start and must
be estimated from the input. For example in the case
that L is the medial axis of X, there are several known
techniques for approximating L by, for example, taking
some vertices of the Voronoi diagram [2, 7]. We would
like to give some sampling conditions that guarantee
that allow us to replace L with an approximation L̂.
Interestingly, the sampling conditions for X̂ are dual to

those used for L̂. That is, we require dX̂H(L, L̂) ≤ ε,

or, in other words, L̂ must be an adaptive sample with
respect to the distance to X̂.

Lemma 14 If dX̂H(L, L̂) ≤ δ < 1, then (BL
X̂
, BL̂

X̂
) is

(h3, h3)-interleaved in (0,∞), where h3(r) = r
1−δ .

Proof. Fix any x ∈ BL
X̂

(r). There is a point p ∈ X̂

such that ‖x−p‖fL(p) ≤ r. Moreover, there is a nearest point

z ∈ L̂ to x, and so fL̂(p) = ‖p − z‖. Lemma 7 and the

assumption that dX̂H(L, L̂) ≤ δ implies that there exists
y ∈ L such that

‖y − z‖ ≤ δ

1− δ
fX̂(z). (1)

The definitions imply the following.

fX̂(z) = min
q∈X̂
‖z − q‖ ≤ ‖z − p‖ = fL̂(p). (2)

So, we can bound fL(p) in terms of fL̂(p) as follows.

fL(p) ≤ ‖y − p‖ [y ∈ L]

≤ ‖y − z‖+ ‖z − p‖ [triangle inequality]

≤ 1

1− δ
fL̂(p) [by (1) and (2)]

So,

‖x− p‖
fL̂(p)

≤ ‖x− p‖
(1− δ)fL(p)

≤ r

1− δ
= h3(r).

Therefore, x ∈ BL̂
X̂

(h3(r)) and so we conclude that

BL
X̂

(r) ⊆ BL̂
X̂

(h3(r)). The proof is symmetric to show

that BL̂
X̂

(r) ⊆ BL
X̂

(h3(r)) �

4.4 Putting it all together

We can now combine the interleavings established in
Corollary 13, and Lemmas 11 & 14, using Lemma 10.

Theorem 15 Let L, L̂ ⊂ Rd and X, X̂ ⊂ Rd \ (L ∪ L̂)

be compact sets. If dX̂H(L, L̂) ≤ δ < 1 and dLH(X̂,X) ≤
ε < 1, then (ALX , B

L̂
X̂

) are (h4, h5)-interleaved in (0, 1),

where h4(r) = r+ε
(1−r−ε)(1−δ) and h5(r) = r

1−δ−r + ε.

Proof. By Lemma 10 along with the interleavings from
Lemmas 11, 13, (ALX , B

L
X̂

) is (h2◦h1, h1◦h2)-interleaved

in (0, 1). Combining this interleaving with the one

resulting from Lemma 14 we get that (ALX , B
L̂
X̂

) is

(h3 ◦ h2 ◦ h1, h1 ◦ h2 ◦ h3) interleaved in (0, 1). Now
we must compute h3 ◦ h2 ◦ h1 and h1 ◦ h2 ◦ h3.

(h3 ◦ h2 ◦ h1)(r) = (h3 ◦ h2)(r + δ) = h3(
r + δ

1− r − δ
)

=
r + δ

(1− r − δ)(1− ε)

(h1 ◦ h2 ◦ h3)(r) = (h1 ◦ h2)(
r

1− ε
) = h1(

r

(1− ε)(1− r
1−ε )

)

= h1(
r

1− ε− r
)

=
r

1− ε− r
+ δ

So we have that h4(r) = r+δ
(1−r−δ)(1−ε) and h5(r) =

r
1−ε−r + δ. �

5 Conclusion

In our paper, we present results based on an alterna-
tive metric in Euclidean space that connect adaptive
sampling and uniform sampling. With a metric comes
a distance function with which one can apply classi-
cal results from critical point theory to infer topolog-
ical properties of the underlying space, thus providing
a connection between surface reconstruction (adaptive
sampling) and homology inference (uniform sampling).
Since one does not know the exact compact set X be-
ing reconstructed, nor the reference set L on which the
adaptive sample is based, approximations X̂ and L̂ are
needed.

We show in Theorem 8 that there is a precise rela-
tionship between samples that are uniformly taken with
respect to dL at some scale, to those same samples being
adaptive in the Euclidean metric. In our main result,
Theorem 15, we show that we can interleave the sub-
level sets of our distance function under this alternative
metric with the metric balls resulting from our approx-
imation of the metric, assuming that both X̂ and L̂ are
uniformly well-sampled with respect to the Hausdorff

distance of dL and dX̂ . Using all approximations, al-
beit well-chosen ones, one can infer the behavior of the
defined metric as well as the sublevel sets of it with
respect to X.

There is a natural next step building off of this re-
search that broadens its scope, background, and further
applications. With the aforementioned critical point
theory, these interleavings could be extended to homo-
logical guarantees about the compact set X in question.
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An application of such a result could be that obstacle
avoidance results could be reframed as obstacle explo-
ration.
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