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Abstract

In their seminal work on homological sensor networks, de

Silva and Ghrist showed the surprising fact that it’s possible

to certify the coverage of a coordinate-free sensor network

even with very minimal knowledge of the space to be

covered. Here, coverage means that every point in the

domain (except possibly those very near the boundary) has a

nearby sensor. More generally, their algorithm takes a pair of

nested neighborhood graphs along with a labeling of vertices

as either boundary or interior and computes the relative

homology of a simplicial complex induced by the graphs.

This approach, called the Topological Coverage Criterion

(TCC), requires some assumptions about the underlying

geometric domain as well as some assumptions about the

relationship of the input graphs to the domain. The goal

of this paper is to generalize these assumptions and show

how the TCC can be applied to both much more general

domains as well as very weak assumptions on the input. We

give a new, simpler proof of the de Silva-Ghrist Topological

Coverage Criterion that eliminates any assumptions about

the smoothness of the boundary of the underlying space,

allowing the results to be applied to much more general

problems. The new proof factors the geometric, topological,

and combinatorial aspects, allowing us to provide a coverage

condition that supports thick boundaries, k-coverage, and

weighted coverage, in which sensors have varying radii.

1 From Sensor Coverage to Data Coverage

Problems in Homological Sensor Networks (HSNs) are
usually stated in the vocabulary of sensor networks.
There are sensors and coverage regions, and an impor-
tant problem is to determine if the sensing region of a
collection of sensors covers a given domain, given only
the neighborhood relationships between the sensors and
some indication of which sensors are near the bound-
ary. The locations (coordinates) of the points is not
assumed, nor is the shape (topology) of the domain to
be covered. Although phrased in the language of sensor
networks, the problem may be understood more gener-
ally as one of data coverage; it answers when a data set
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sufficiently covers a domain, and holes in coverage can
be viewed as gaps in the data.

A surprising result by de Silva & Ghrist is that
there exists a computable, sufficient condition called
the Topological Coverage Criterion (TCC) to certify
coverage without knowing the locations of the sensors
when the domain’s boundary is smooth [4]. All that
is required is that the sensors have unique identifiers,
can detect nearby sensors, can differentiate whether
neighboring sensors are “close” or “very close” (in a
technical sense to be defined below), and can detect
if the boundary of the domain is close. Developed
over a series of papers [8, 17, 5, 4], the most general
version of the TCC can be understood as a purely
geometric problem on point sets P in Rd with unknown
coordinates in an unknown domain D. The input is
just a pair of nested neighborhood graphs on the points
indicating which points are close to which others and a
labeling of the points indicating which points are close
to the boundary of D. Determining coverage is ill-posed
with only this information, but de Silva & Ghrist proved
that the TCC gives a sufficient condition for coverage
(of a slightly shrunken version) of the domain when the
radii are all equal, the boundary of the domain is a
smooth manifold with bounded injectivity radius, and
the goal is to certify single-coverage (each point covered
by at least one sensor). In this paper, we generalize these
results in several directions, most notably in eliminating
many of the geometric assumptions on the domain,
while also certifying multiple-coverage and allowing for
varying radii.

For an input graph G = (P,E) where P is a set
of points, and a subset Q ⊆ P of points labeled as
near the boundary, the TCC algorithm builds a pair
of simplicial complexes, one from the cliques in G and
one from the cliques in the subgraph of G induced by
Q. By a straightforward matrix reduction, a vector
space called the relative d-dimensional homology of
this nested pair of subcomplexes can be computed.
In an ideal situation, the dimension would indicate
exactly the number of connected components if and
only if the domain is covered. However, this simplistic
approach does not work in general, because it can
detect spurious components. The insight of de Silva and
Ghrist was to show that for sufficiently nice geometric
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domains, such as subsets of Rd bounded by sufficiently
smooth manifolds, the spurious components can be
eliminated by using two different scales and replacing
the homology with the so-called persistent homology
induced by inclusion of the smaller pair of complexes
into the larger pair. In terms of linear algebra, this move
replaces a vector space representing a single scale (the
d-dimensional homology) with the image of a linear map
between the vector spaces at two scales. To show that
this actually works requires a combination of geometry,
topology, algebra, and combinatorial representations. A
motivating goal when we started this work was to factor
these concerns so as to make it easier to generalize.

The main contributions of this paper are as follows.

1. A new proof of the TCC that applies to discon-
nected, compact domains with no smoothness as-
sumptions satisfying only very weak topological
conditions. In addition to being more general, our
approach is simplified by factoring the geometric,
topological, and algorithmic aspects of the original
proof. We first give a completely geometric version
of the main theorem that replaces all of the geo-
metric assumptions on the domain with very weak
topological assumptions. There is no need for the
boundary of the domains to be smooth, or even
manifold. This geometric TCC gives a guarantee
directly about the coverage regions directly rather
than previous work that required reasoning about
the so-called shadow of the Rips complex.

2. An application of the TCC to weighted k-coverage
via the weighted k-nearest neighbor distance. This
introduces applications to a less restrictive class of
distance-to-set functions permitted by the weak-
ened assumption on the underlying space. This re-
quires a slight modification to the original TCC al-
gorithm where we replace the clique complexes with
subcomplexes of their barycentric subdivisions.

1.1 Related Work Since de Silva & Ghrist devel-
oped the theory of coordinate-free coverage in homolog-
ical sensor networks [17, 4, 5, 8], the theory has been
extended in several directions. To test if coverage will
be robust to failures, we have considered k-coverage.
An alternative perspective on robustness was given by
Munch et al. using probabilistic models of failure [14].
D lotko et al. gave algorithms for computing the TCC
in a distributed fashion [6]. Gamble et al. present some
related methods for analyzing coverage in a dynamic
setting, where sensors are allowed to move in time[9, 7].
Adams and Carlsson considered a related, dynamic ver-
sion of the problem where instead of coverage, one wants
to know if it is possible to evade a collection of moving

sensors [1].

2 Background

A length space is a metric space (M, d) in which the
distance between any two points x, y ∈ M is equal to
the infimum of the lengths of all paths from x to y.
Throughout we will consider a compact length space
(M, d), where there is a homeomorphism from M to
a compact subset of Rd. To simplify notation we will
interpret M directly as a subset of Rd, but with the
metric d on the points identified with M , rather than
the Euclidean metric. We define the complement of
a compact set A ⊆ M as A := (Rd ∪ {∞}) \ A, where
Rd ∪ {∞} is the compactification of Rd, which we note
is homeomorphic to the d-sphere.

If A ⊆ M is endowed with weights wy ≥ 0 for
all y ∈ A, the weighted distance from a point x
to a weighted point y is defined as the power distance

ρy(x) :=
√

d(x, y)2 + w2
y. Such a set is referred to

as a weighted set. We use weighted distances to
model coverage by disks of varying radii, where larger
weights correspond to smaller radii. These weights
can be used to model high dimensional noise when the
weights of each point are defined to be the distance to
its projection onto a domain.

Let A ⊆ M be a weighted compact set. The
weighted k-nearest neighbor distance from a point
x to a weighted compact set A ⊆M is defined as

dk(x,A) := inf
K∈(Ak)

max
y∈K

ρy(x).

where
(
A
k

)
denotes the collection of k-element subsets of

A. The weighted (k, ε)-offsets of A are defined as

Aεk := {x ∈M | dk(x,A) ≤ ε} .

The unweighted ε-offsets of A are defined as

Aε :=

{
x ∈M | min

a∈A
d(x, a) ≤ ε

}
,

Note that for any weighted set A, any ε ≥ 0, and
any k ≥ 1 we have Aεk ⊆ Aε. The coverage region
of a point a ∈ A at scale ε is denoted cov(a, ε) =
{x ∈M | ρa(x) ≤ ε}.

Simplicial Complexes. A simplicial complex
K is a collection of subsets, called simplices, of a vertex
set V that is closed under taking subsets. That is, for
all σ ∈ K and τ ⊂ σ it must follow that τ ∈ K.
The dimension of a simplex σ ∈ K is defined as
dim(σ) := |σ|−1 where | · | denotes set cardinality. The
dimension of a simplicial complex K is the maximum
dimension of any simplex in K. We define a pair of
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complexes to be a pair (K,L) where K is a simplicial
complex and L is a subcomplex of K.

A graph G = (V,E) is defined to be a simplicial
complex of dimension at most 1, consisting of a vertex
set V and an edge set E ⊆

(
V
2

)
. Given a subset

U ⊆ V the induced subgraph in G by U is defined
G[U ] := (U,E ∩

(
U
2

)
).

Given a graph G = (V,E) a clique is a collection
of vertices σ ⊆ V such that for all u, v ∈ σ the edge
{u, v} ∈ E. The clique complex of G is defined to be
a simplicial complex with simplices for each clique in G.

Clq(G) := {σ ⊆ V | ∀u, v ∈ σ, {u, v} ∈ E}

Given a pair of graphs (G,H) where H is a subgraph
of G, we will denote the pair of Clique complexes as
Clq(G,H) = (Clq(G),Clq(H)).

The Čech complex of a finite collection of
weighted points A ⊂M at scale ε is defined as

Čε(A) :=

{
σ ⊆ A |

⋂
p∈σ

cov(p, ε) 6= ∅

}
.

The (Vietoris-)Rips complex of A at scale ε is
defined as

Ripsε(A) :=
{
σ ⊆ A | {p, q} ∈ Čε(A) for all p, q ∈ σ

}
.

The Rips complex is the clique complex derived from
the edges in the Čech complex.

An important result about the relationship of Čech
and Rips complexes follows from Jung’s Theorem [11]
relating the diameter of a point set A and the radius of
the minimum enclosing ball:

(2.1) Čε(A) ⊆ Ripsε(A) ⊆ Čϑdε(A),

where the constant ϑd =
√

2d
d+1 for unweighted sets and

ϑd = 2 for weighted sets (see [2]).
The k-Barycentric Decomposition. Given a

simplicial complex K we define a flag in K to
be an ordered subset of simplices {σ1, . . . , σt} ⊂
K such that σ1 ⊂ . . . ⊂ σt. The barycen-
tric decomposition of K is the simplicial complex
formed by the set of flags of K and is defined as
Bary(K) := {U ⊂ K | U is a flag of K}. The vertices
of the barycentric decomposition are the simplices of
K. We define the degree of a flag σ1 ⊂ · · · ⊂ σt to be
|σ1|. The k-barycentric decomposition of a complex
S is defined as

k-Bary(K) := {U ⊂ K | U is a flag in K with |U | ≥ k} .

The k-barycentric decomposition of the Clique complex
of a graph G will be denoted

Clqk(G) = k-Bary(Clq(G)).

Similarly, the k-barycentric decomposition of the Čech
complex of a finite point set A at a scale ε will be
denoted

Čεk(A) = k-Bary(Čε(A)).

Figure 1: A simplicial complex K and its 0, 1, and 2-
barycentric decompositions.

Homology and Persistent Homology. Homol-
ogy is a tool from algebraic topology that gives a com-
putable signature for a shape that is invariant under
many topological equivalences, in particular homemor-
phisms and homotopy equivalences. It gives a way to
quantify the components, loops, and voids in a topolog-
ical space. It is a favored tool for applications because
its computation can be phrased as a matrix reduction
problem with matrices representing a finite simplicial
complex.

Throughout, we assume singular homology over a
field, so the kth homology group Hk(C) of a space C is
vector space. When considering the homology groups
of all dimensions, we will write H∗(C). We will make
extensive use of relative homology. That is, for a pair
of spaces (A,B) with B ⊆ A, we write H∗(A,B) for the
homology of A relative to B.

We can also talk about the homology of a map
between two spaces. Given two spaces A and B and
a map f : A → B, we can consider the homology of
both the spaces and the map for all homology groups
due to the functoriality of homology, i.e. we have a
map f∗ = H∗(A) → H∗(B), which we will denote
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f∗ := H∗(A → B). Of particular interest in this work
is the homology map induced by inclusion from one
space to another, in which commutativity of diagrams
of spaces is preserved when passed to a diagram of
homology groups.

Other Topological Notions. We will employ
several other standard notions from topology. A space is
triangulable if it is homeomorphic to a finite simplicial
complex. Triangulability acts as a non-degeneracy
condition.

There are vector spaces dual to the homology
groups called the cohomology groups and they are de-
noted with superscripts as H∗(C) with respect to a space
C. For finite-dimensional homology groups, the so-
called Universal Coefficient Theorem implies that
the r-dimensional homology and cohomology groups are
isomorphic. This will allow us to switch between the two
theories when it is convenient.

The other way we will switch between homology and
cohomology is by Alexander duality which states, in
general, that for pairs of nonempty compact spaces in
Rd ∪ {∞}, their r-dimensional relative homology is iso-
morphic to their complement spaces’ (d−r)-dimensional
relative cohomology, i.e. Hr(X,Y ) ∼= Hd−r(Y ,X),. The
specific version we use will be discussed in Section 5.

Nerves and Persistent Nerves. The Čech com-
plex is a special case of a general construction known
as a nerve. Let U = {Ui | i ∈ I} be a collection of
sets, where I is any indexing set. The nerve of U is the
simplicial complex with vertex set I such that σ ⊆ I
is a simplex if and only if

⋂
i∈σ Ui 6= ∅. We say that

U covers the set
⋃
i∈I Ui and it is a good cover if

the intersections are empty or contractible. For such
covers, one can relate the nerve of the cover and union
using the so-called Nerve Theorem. Chazal and Oudot
generalized the nerve theorem to the persistence set-
ting [3] and Sheehy extended it to k-coverage [16]. This
is captured in the following lemma, where (Čεk(A,B)) =
(Čεk(A), (Čεk(B)).

Lemma 2.1. For any B ⊂ A ⊆ M , if the coverage
regions {cov(a, α) | a ∈ A} form a good cover of Aα1
and similarly for Aβ1 , Bα1 , and Bβ1 , then the following
diagram commutes for all k and the vertical maps are
isomorphisms.

H∗(A
α
k , B

α
k ) //

∼=
��

H∗(A
β
k , B

β
k )

∼=
��

H∗(Č
α
k (A,B)) // H∗(Č

β
k (A,B))

A combinatorial construction of this fact appears
in [16], but a more direct topological argument can be
found in Appendix B.

3 Assumptions

Strange examples abound in topology. One must make
some assumptions about the underlying domain to make
the TCC possible. In this section, we will first introduce
and illustrate the minimal geometric properties that we
require of the bounded domain to be covered. We will
weaken the geometric and input assumptions on the
domain and point sample from those required for the
topological coverage criterion of de Silva & Ghrist to
apply it a much wider class of sets.

For a pair of sets (D,B) such that B ⊆ D, we say
that B surrounds D if there is no path from D \ B to
D that does not intersect B. Formally, B surrounds D
if and only if H0(D \ B) ∼= H0(B,D). If such a pair
satisfies the following conditions for 0 < 3α ≤ β, we
want to certify that a finite sample P ⊂ D covers D at
scale α in the sense that D \ B2α ⊂ Pα.

Geometric Assumptions

0. (The Domain) D is a bounded, compact
length space homeomorphic to a subset of
Rd and B ⊆ D is closed and surrounds D.

1. (Components are not too small) The map
H0(D \ Bα+β ↪→ D \ B2α) is surjective.

2. (Components are not too close) The map
H0(D \ B2α ↪→ (D \ B)2α) is injective.

Lemma 3.1 allows us talk about the homology of
a subset of the domain D \ Bε in terms of relative
homology.

Lemma 3.1. If B surrounds D, then for all ε > 0,
H0((D \ Bε, ∅) ↪→ (Bε,Dε)) is an isomorphism.

Proof. First we show the map is injective. Given some
non-trivial 0-chain [x] ∈ H0(D \ Bε), we can pick a
representative point x ∈ D \ Bε ⊆ Bε. Because B
surrounds D, there does not exist a path from D \ B
to D that does not intersect B, and so there does not
exist a path from D \ Bε to Dε that does not intersect
Bε. Thus, [x] 6= 0 ∈ H0(Bε,Dε).

Next we show the map is surjective. Any [x] ∈
H0(Bε,Dε), is represented by a point x in a connected
component of Bε \ Dε = D \ Bε, and thus a homology
class [x] ∈ H0(D \ Bε).

Assumption 1 disallows domains with components
that are too small to be included in the map from
D \ Bα+β ↪→ D \ B2α so we can reliably compare the
coverage region to the sampled subset of the domain
in terms of the 0-dimensional homology, or connected
components. This approach is motivated by the notion
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Figure 2: A domain that violates Assumption 1 as
the upper-left component appears in the inclusion from
D \ Bα+β to D \ B2α.

Figure 3: Domains which violate Assumption 2 in which
components are lost in the inclusions D \ B2α ↪→ D
and D ↪→ (D \ B)2α respectively. In the first case a
single component is pinched apart in D \ B2α. In the
second, two components which are too close are merged
in (D \ B)2α.

that a coverage hole in a d-dimensional domain can be
represented by a connected component of the comple-
ment space under Alexander duality. Fig. 2 illustrates
a domain in which the induced map is not surjective.

Assumption 2 requires that the components of D \
B2α are spaced out well enough so that no components
are joined with inclusion into D2α. Fig. 3 illustrates
domains which violate Assumption 2. Assumptions 0-2
are necessary in order to prove the Geometric TCC, and
as we will see Assumption 2 is used to bound the number
of connected components of the shrunken domain in the
Algorithmic TCC.

Let (D,B) be a pair of spaces satisfying Assump-
tions 0–2 for constants α > 0, β ≥ 3α. The input
to Algorithm 1 will be a pair of graphs (G1, G2), a fi-
nite weighted point sample P ⊂ D and a subsample
Q = {p ∈ P | cov(p, α) ∩ B 6= ∅}.

Input Assumptions

3. The graphs G1, G2 have a vertex set P ⊂ D and
subgraphs G1[Q], G2[Q] induced by restriction
to the vertex set Q = {p ∈ P | cov(p, α) ∩ B 6=
∅}.

4. U = {cov(p, ε) | p ∈ P} is a good cover for
ε ∈ {α, β}.

5. Clqk(G1) ⊆ Čαk (P ) ⊆ Čβk (P ) ⊆ Clqk(G2).

6. Each component of D \B2α contains a point in
P .

7. There exists a triangulation K of Rd ∪ {∞}
and triangulations of P εk and Qεk, Lε and Mε

respectively, where Mε ⊂ Lε in K, for ε ∈
{α, β}.

The input graphs will be used to construct clique
complexes, which by Assumption 5 can be interleaved
with Čech complexes at scale α and β, and then
Assumption 4 allows us to apply the Persistent Nerve
Lemma [3]. Note that Assumption 5 is satisfied when
every clique σ ⊆ G1 is such that

⋂
v∈σ cov(v, α) 6= ∅

and cov(u, β) ∩ cov(v, β) 6= ∅ implies {u, v} ∈ E(G2)
for all u, v ∈ σ. When the domain D is equipped with
the Euclidean metric, Assumption 5 is equivalent to the
interleaving provided by Jung’s theorem (Equation 2.1)
where the k-clique complex of G1 can be taken as the
k-Rips complex of P at scale α/ϑd. Finally, Assumption
6 is in the proof of Lemma 5.2 to bound the number of
connected components of D \ B2α using a computable
combinatorial structure.

Relationship to the de Silva & Ghrist TCC
According to de Silva and Ghrist [4, Remark 4.5], the
smooth manifold hypothesis seems to be a necessary re-
quirement in order to apply the TCC. Because their
analysis involved directly comparing the thickened re-
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Figure 4: An example of a pair (D,B) in which B surrounds D. We would like to assert conditions which allow
us to verify a weighted sample P k-covers D \ B2α at scale α. We can then compare the relative homology of the
pair (Pα, Qα) to (D,B2α).
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gion around the boundary to the boundary points’ cor-
responding complex, it was necessary for them to show
that the thickness of this region is such that any topo-
logical noise in the complex is eliminated with inclusion
from scale α to scale β. This amounts to proving that
that cycles lying entirely in a thickening of the boundary
of the domain cannot persist, as shown in [4, Lemma
3.3]. In Fig. 5, we show a domain without a smooth
boundary in which the thickened boundary contains a
cycle that persists across a range of scales. This exam-
ple illustrates the the contrast between [4, Lemma 3.3]
and our Lemma 4.1, which requires only Assumptions 0
and 1, and in which the persistence of this cycle does not
indicate the persistence of a relative cycle. This is the
critical idea to understand how we show the correctness
of the TCC under these weaker assumptions.

4 A New Proof of the Topological Coverage
Criterion

Consider a domain D, a set B that surrounds D, and
constants α and β such that 0 < 3α ≤ β satisfying
Assumptions 0–2. Let P ⊂ D be a weighted finite point
set and Q = {p ∈ P | cov(p, α) ∩ B 6= ∅} be a subsample
of P within distance α of the boundary. We will give a
sufficient condition to guarantee coverage of a shrunken
domain D \ B2α by Pαk , i.e. k-coverage.

We will assume non-negative weights wx ≥ 0
assigned to each x ∈ P , and that wx = 0 for all
points x ∈ D \ P . This implies that Dεk = Dε,
and similarly Bεk = Bε, so we will simply use the
notation Dε and Bε throughout. Moreover, we know
that Pαk ⊆ Dαk = Dα by the monotonicity of dk. For any
arbitrary weighted compact set A ⊆ D, Aεk ⊆ Aε1 ⊆ Aε

and Q ⊆ Bα, so for ε ≥ 0, Qεk ⊆ Qε ⊆ Bα+ε.
Diagram (4.2) is a commutative diagram of inclusion
maps. Complementing all the spaces and reversing
inclusions give Diagram (4.3).

(4.2) (Pαk , Q
α
k ) �
� //

� _

��

(P βk , Q
β
k)� _

��
(D2α,B2α) �

� // (Dα+β ,Bα+β)

(4.3) (Bα+β ,Dα+β)
� � j //

� _

��

(B2α,D2α)� _

��
(Qβk , P

β
k ) �
� i // (Qαk , P

α
k )

We use the diagram of the complements so that all
the proofs only require arguments about connectivity

(0-dimensional homology). Diagram (4.4) is formed
from Diagram (4.3) by applying the homology functor.

(4.4) H0(Bα+β ,Dα+β)
j∗ //

��

H0(B2α,D2α)

��
H0(Qβk , P

β
k )

i∗ // H0(Qαk , P
α
k )

This commutative diagram induces the most impor-
tant map in this paper, p∗ : im j∗ → im i∗. Though re-
versed and complemented, this map describes the topol-
ogy of the offsets embedded into the domain, where the
scale change eliminates noise. It will capture exactly the
topological information we want. Analyzing p∗ directly
simplifies our approach compared to previous work, sim-
plifying the proof and eliminating some hypotheses.

Theorem 4.1 proves that we can infer coverage
from the rank of i∗ in order to construct an algorithm
confirming coverage by comparing the rank of i∗ to
the number of connected components of D \ B2α. This
motivates Assumption 1 ensuring that im j∗ reflects the
0-dimensional homology of our coverage domain D\B2α.

The following two lemmas prove two important
properties of p∗. First, we show that Assumptions 0 and
1 suffice to guarantee that p∗ is surjective (Lemma 4.1).
Then, we prove that if p∗ is injective, then the domain
is covered (Lemma 4.2). These will lead directly to the
geometric form of the Topological Coverage Criterion
(Theorem 4.1).

Lemma 4.1. Given Assumptions 0 and 1, the map p∗
is surjective.

Proof. Assumption 1 and Lemma 3.1 imply that j∗ is
surjective. First we choose a basis for im i∗ such that
each basis element is represnted by a point in Pαk \Q

β
k .

Consider x ∈ Pαk \Q
β
k such that [x] 6= 0 ∈ im i∗.

Suppose x ∈ B2α. By definition of the offsets, there

is a point y ∈ B such that d(x, y) ≤ 2α. Because x ∈ Qβk
by hypothesis, dk(x,Q) > β. We will show that if a
point z is in the shortest path xy, then z ∈ Qαk . For
any z ∈ xy, we have d(x, z) ≤ d(x, y) ≤ 2α, thus the
following inequality holds.

dk(z,Q) ≥ dk(x,Q)− d(x, z) [dk is Lipschitz]

> β − 2α [dk(x,Q) > β,d(x, z) ≤ 2α]

≥ α. [β ≥ 3α]

From this inequality we conclude that z ∈ Qαk for all
z ∈ xy, and thus xy ⊆ Qαk and y ∈ B ∩ Qαk . Now
suppose y ∈ Pαk as well. By the definition of Pαk , for

some A ∈
(
P
k

)
, y ∈ cov(p, α) for all p ∈ A, which implies
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Figure 5: This instance illustrates the failure of Lemma 3.3 of [4] when the boundary is not smooth. A cycle that
is trivial in the thickened boundary persists. This highlights the need to work with the relative homology of the
domain modulo the boundary rather than the homology of the boundary alone. Such a cycle in the boundary
cannot form a relative cycle.

that A ⊆ Q, so y ∈ Qαk , a contradiction. Thus we may
conclude that y 6∈ Pαk , which is equivalent to y ∈ Pαk .

Any path γ : [0, 1] → Qαk such that γ(0) = x
and γ(1) = y, generates a class [γ] in the chain group
C1(Qαk ) containing γ. For [γ] ∈ C1(Qαk, P

α
k ) it follows

∂([γ]) = [x + y] = [x] as y ∈ Pαk , and therefore that
there must exist z ∈ xy ∩ Qαk . This is a contradiction
as we have shown that xy ∩Qαk = ∅, and thus x cannot
be in B2α.

Now, we may assume x ∈ B2α. Then x ∈ D \ B2α

so [x] 6= 0 ∈ H0(B2α,D2α). Because j∗ is surjective,
H0(B2α,D2α) = im j∗ and thus p∗([x]) = [x] and so
[x] ∈ im p∗. It follows that p∗ is surjective.

The following lemma will allow us to confirm cov-
erage by comparing the ranks of im i∗ and im j∗.

Lemma 4.2. Given Assumptions 0 and 1, if p∗ is injec-
tive then D \ B2α ⊆ Pαk .

Proof. The proof is essentially the same as that pre-
sented by de Silva & Ghrist [4]. We include it here in
our own notation for completeness.

Suppose for contradiction p∗ is injective and there
exists a point x ∈ (D \ B2α) \ Pαk . Thus [x] 6= 0 ∈
H0(B2α,D2α), because the point x is in some connected
component of D \ B2α. Moreover, [x] ∈ im j∗, because
j∗ is surjective by Assumption 1. Consider the following
sequence of maps induced by inclusions.

H0(B2α,D2α)
f∗−→ H0(B2α,D2α ∪ {x}) g∗−→ H0(Qαk , P

α
k )

As f∗([x]) is zero in H0(B2α,D2α ∪ {x}), then p∗([x]) =
(g∗ ◦ f∗)([x]) = 0, contradicting the assumption that p∗
is injective.

We are now ready to state and prove the geomet-
ric version of the TCC, relating the k-covered offsets of
the sample to the underlying domain. Note that it will
not directly give an algorithm (that will come in The-
orem 5.2), but instead a result about the offsets. This
differs from previous work that analyzed an embedding
of a Rips complex.

Theorem 4.1. (The Geometric TCC) Let (D,B)
be a pair of sets satisfying Assumptions 0 and 1. Let α
and β be constants such that 0 < 3α ≤ β. Let P ⊂ D be
a finite set with Q = {p ∈ P | cov(p, α) ∩ B 6= ∅}. Let
i∗ and j∗ be the maps in Diagram (4.4). If rk i∗ ≥ rk j∗
then D \ B2α ⊆ Pαk .

Proof. Lemma 4.1 implies that p∗ : im j∗ → im i∗ is
surjective, so rk i∗ ≤ rk j∗. So with the assumption
that rk i∗ ≥ rk j∗, rk i∗ = rk j∗. Since P is a finite
point set, im i∗ is finite-dimensional and by equality,
im j∗ is as well, so p∗ is an isomorphism, and thus it is
injective. Lemma 4.2 then implies D \ B2α ⊆ Pαk .

5 Computing the TCC

In the previous section we proved sufficient conditions
for generalized coverage in terms of the offsets of the
input points. In this section, we provide an algorithm to
check for k-coverage of a shrunken domain by a weighted
sample P , i.e. that D \ B2α ⊆ Pαk and a proof of its
correctness.

Given a pair (D,B) and non-negative constants
α, β such that β ≥ 3α satisfying Assumptions 0–
2, the input to Algorithm 1 is: a pair of graphs
(G1, G2), a finite weighted point sample P ⊂ D, a set
Q = {p ∈ P | cov(p, α) ∩ B 6= ∅}, and k > 0 satisfying
Assumptions 3–7. G1 and G2 ideally represent the
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connectivity graphs of the points in P at two scales, and
will be used to construct clique complexes that can be
related to the Geometric TCC within a constant factor.
Note that if the algorithm’s output is false it does not
necessarily mean there is not coverage.

Algorithm 1 Check if D \B2α ⊆ Pαk
1: procedure k-Coverage(G1, G2, P,Q, k)
2: let c := |Components(G1[P \Q])|
3: let

r := rk Hd(Clqk(G1, G1[Q]) ↪→ Clqk(G2, G2[Q]))

4: if c = r then return True
5: else return False

Lemma 5.1, Lemma 5.2 and Theorem 5.2 collec-
tively provide a proof of correctness of Algorithm 1.
Lemma 5.1 bounds the rank of the map between the
clique complexes at different scales by rk i∗, in order to
compare it to rank j∗ through Theorem 4.1. Lemma 5.2
states that if the components are separated enough and
each component of D \ B2α contains a point in P , for-
mally defined in Assumptions 2 and 6, then the number
of connected components of the graph induced by re-
striction to P \ Q on G1 provides an upper bound for
the number of components of D \ B2α.

In order to prove Lemma 5.1, we must invoke
Alexander Duality. The form which is most useful based
on our triangulability assumptions, Assumption 7, is the
following. The naturality of it implies that homology
maps induced by inclusion maps at the level of pairs of
spaces commute with the duality.

Theorem 5.1. (Alexander Duality [10]) Let K
be an abstract simplicial complex which is a combinato-
rial oriented d-manifold. Given a pair (L,M), where L
is a subcomplex of some refinement of K, and M is a
subcomplex of L, there is a natural isomorphism

Hr(L,M)→ Hd−r(M,L).

The complements of the simplicial complexes in
Theorem 5.1 are the simplicial complexes in K that do
not share vertices with the original complex. By consid-
ering a sufficiently refined triangulation K of Rd ∪ {∞}
and the corresponding triangulations of Pαk , Qαk , P βk ,

and Qβk , whose existence is assumed in Assumption
7, Theorem 6.2.17 in Spanier [18], Theorem 74.1 in
Munkres [15] and Theorem 5.2 in [10] collectively pro-
vide the following corollary to Theorem 5.1.

Corollary 5.1. Given α, β > 0, and P and Q satis-
fying Assumption 7, we have the following two natural

isomorphisms.

H0(Qβk , P
β
k )→ Hd(P βk , Q

β
k)

and
H0(Qαk , P

α
k )→ Hd(Pαk , Q

α
k ).

Lemma 5.1. The rank of the map
Hd(Clqk(G1, G1[Q]) ↪→ Clqk(G2, G2[Q])) induced
by inclusion is at most rk i∗.

Proof. Corollary 5.1 with respect to Diagram (4.4) im-

plies that rk(Hd(P βk , Q
β
k) → Hd(Pαk , Q

α
k )) = rk i∗.

By the Universal Coefficient Theorem, we then have
rk(Hd(P

α
k , Q

α
k ) → Hd(P βk , Q

β
k)) = rk i∗, and by

Lemma 2.1, for all ε ≥ 0, H∗(P
ε
k , Q

ε
k) ∼= H∗(Č

ε
k(P,Q)),

so rk(Hd(Č
α
k (P,Q) ↪→ Čβk (P,Q))) = rk i∗.

By Assumption 5, the inclusion Clqk(G1, G1[Q]) ↪→
Clqk(G2, G2[Q]) can be factored as

Clqk(G1, G1[Q]) ↪→ Čαk (P,Q) ↪→ Čβk (P,Q) ↪→ Clqk(G2, G2[Q]).

It follows that

rk(Hd(Clqk(G1, G1[Q]) ↪→ Clqk(G2, G2[Q])))

≤ rk(Hd(Č
α
k (P,Q) ↪→ Čβk (P,Q)))

= rk i∗.

Lemma 5.2. Let (D,B) be a pair of spaces satisfying
Assumptions 0 and 2 for constants α, β ≥ 3α > 0. If
P ⊂ D, Q = {p ∈ P | cov(p, α) ∩ B 6= ∅} and the graph
G1 satisty Assumptions 3, 5 and 6 for some constant k
then |Components(G1[P \Q])| ≥ H0(D \ B2α).

Proof. Assume there exists p, q ∈ P \ Q such that p
and q are connected in Clq(G1[P \ Q]), but not in
D \ B2α. By Assumption 5, we have that d(p, q) ≤ 2α
and [p] 6= [q] in H0(D \ B2α). However, the shortest
path pq ∈ (D \B)2α, as the distance between p and q is
less than 2α, so [p] = [q] in H0(D2α), which implies that
H0(D\B2α ↪→ (D\B)2α) is not injective, a contradiction
to Assumption 2.

Theorem 5.2. (Algorithmic TCC) Consider a pair
(D,B), a finite point sample P ⊂ D, and constants
k, α, β, where 0 < 3α ≤ β, satisfying Assumptions 0–7.
If

rk Hd(Clqk(G1, G1[Q]) ↪→ Clqk(G2, G2[Q]))

= |Components(G1[P \Q])|

then D \ B2α ⊆ Pαk .

Proof. For simplicity, define

a∗ := Hd(Clqk(G1, G1[Q]) ↪→ Clqk(G2, G2[Q]))
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and set c = |Components(G1[P \Q])|, m = H0(D\B2α).
By our hypotheses and Lemma 5.1, rk i∗ ≥ rk a∗ = c.
By Lemma 5.2, c ≥ m, and Assumption 2 implies that
j∗ is surjective by Lemma 3.1 so by definition of B
surrounding D, m = rk j∗. Thus rk i∗ ≥ rk a∗ = c ≥
m = rk j∗, namely rk i∗ ≥ rk j∗, so by Theorem 4.1 we
can conclude D \ B2α ⊆ Pαk .
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A Distance Lemmas

Our use of weighted distances to model noise can be
seen as a special case of a much more general way to
integrate side information into a metric. Several claims
in the paper about these weighted distances such as
being Lipschitz or their relationship to the unweighted
distance are treated here in extreme generality.

Let (A,dA) and (B, dB) be metric spaces with 0 ∈
B. Now let X be a compact subset of A×B and define

dA×B((a, b), (a′, b′)) = (dA(a, a′)p + dB(b, b′)p)1/p

for (a, b), (a′, b′) ∈ A × B. We will define the distance
function dX : A→ R to be the minimum distance from
a point a ∈ A to the set X.

dX(a) := min
x∈X

dA×B((a, 0), x).

Lemma A.1. (1-Lipschitz) dX is 1-Lipschitz.

Proof. Pick any a, a′ ∈ A and let x′ ∈ X be such that
dX(a′) = dA×B((a′, 0), x′). Note

dx(a) = min
x∈X

dA×B((a, 0), x)

≤ dA×B((a, 0), x′)

≤ dA×B((a, 0), (a′, 0)) + dA×B((a′, 0), x′)

= dA(a, a′) + dX(a′).

Corollary A.1. (dk 1-Lipschitz) If A ⊆ X is a
weighted, compact set then for all x, y ∈ X

dk(x,A)− dk(y,A) ≤ d(x, y).

Lemma A.2. (Bounded) dA( · , X) ≤ dX .

Proof. Let x0 ∈ X be such that dX(a) =
dA×B((a, 0, x0)) and note,

dA(a, x) = min
x∈X

dA(a, x)

≤ dA(x, x0)

≤ (dA(a, x0)p + dB(0, x0)p)1/p

= dA×B((a, 0), x0) = dX(a).

The following Lemma is used implicitly in the text
to claim that if A ⊆ B then Aδ ⊂ Bδ for all δ ≥ 0.

Lemma A.3. (Monotone) If B ⊂ X and A ⊂ B are
weighted compact sets then for all x ∈ X

dk(x,B) ≤ dk(x,A)

Proof. Note that for all ε > 0 there exists an weighted
k-set Yε ∈

(
A
k

)
such that

max
y∈Yε

√
ρy(q)− ε ≤ dk(q,A) ≤ max

y∈Yε

√
ρy(q)

As Yε ∈
(
B
k

)
if there exist any b ∈ B\A such that ρb(x) <

maxy∈Yε ρy(x) then dk(x,B) < dk(x,A). Otherwise
dk(x,B) = dk(x,A).

B Persistent Multi-cover Nerves

In this appendix, we discuss the multi-cover version of
the Persistent Nerve Lemma (our Lemma 2.1 above).
Although a combinatorial proof of this fact appeared
in [16], we present here a summary of a more algebraic
proof. In fact, the description below is virtually iden-
tical to the prove of the Nerve Theorem as found in
Koslov [12], witht eh change that we are considering
only a subcomplex of the barycentric subdivision. The
interested reader can compare this to the standard set-
ting (1-coverage) to see that the technical lemmas are
all identical.

Let Λk = {v ⊆ [n] | |v| ≥ k} and for all w ⊆ v ⊆ [n],
we have a morphism v → w. This is a subcategory of
the so-called cosimplicial indexing category ∆op = Λ0.
Given a collection U = {U1, . . . , Un} of open sets and
v ∈ Λk, let D(v) :=

⋂
i∈v Ui. We say U is a good open

cover if D(v) is empty or contractible for all v ∈ Λk. For
each morphism v → w, let D(v → w) be the inclusion
D(v) ↪→ D(w). The functor D : Λk → Top is called a
diagram. The homotopy colimit of D is

hocolim D :=
⋃

σ=v0→···→vm

(σ ×D(v0))

In this definition, σ = v0 → · · · → vm is a chain of mor-
phisms in Λk and σ denotes the geometric realization of
σ defined as

σ := {(xv)v∈Λk | xv ∈ [0, 1],
∑
v∈Λk

xv = 1, xv 6= 0 only if v ∈ σ}.

We use the geometric realization because when all
maps in the diagram are inclusions, it allows us to
avoid writing the homotopy colimit as a quotient space.
This is closely related the blowup complex used in work
on localized homology [19] and parallel algorithms for
persistent homology [13].

Let WkU =
⋃
v∈Λk

D(v) denote the k-covered re-
gion. (This is also the colimit of D). Let NkU be
the k-nerve of the cover U defined as the simplicial
complex whose simplices are those chains of morphisms
σ = v0 → · · · → vm such that all D(vi) are nonempty.
It can be viewed as the subcomplex of the barycentric
subdivision of the nerve of U induced on those vertices
corresponding to simplices of dimension at least k − 1.
For this reason, N0U is homeomorphic to the nerve of U .
More importantly, NkU is also equivalent to a diagram
over Λk in which every space is a single point.

There are two natural maps associated with
hocolim D. The first is the base projection map b :
hocolim D → NkU . The second is the fiber projection
map f : hocolim D → WkU . These maps are just the
projections onto the first and second factors respectively
of the product structure in hocolim D. As such, the pro-
jections commute with inclusions such as when we have
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a pair of nested open covers. When U is a good open
cover, the base projection map is a homotopy equiva-
lence. This follows from the homotopy lemma for homo-
topy colimits, which says that a map between homotopy
colimits where the maps on individual spaces are homo-
topy equivalences is itself a homotopy equivalence (see
Koslov [12]). For open covers, the fiber projection map
is also a homotopy equivalence. The main fact needed
is that an open cover admits a partition of unity sub-
ordinate to it that allows one to define a lifting of Wk

into a deformation retract of hocolim D. The proof of
this fact may also be found in Koslov [12].

Let V = {V1, . . . , Vn} be a good open subcover
of U , that is Vi ⊆ Ui for all i (note that some
Vi could be empty). It follows that WkV ⊆ WkU
and also that NkV ⊆ NkU . Moreover, if D′ is the
diagram of V , then hocolim D′ ⊆ hocolim D and
both projection maps commute with this inclusion.
Thus, the homotopy equivalences WkU → NkU and
WkV → NkV give a homotopy equivalence of pairs
(WkU,WkV ) → (NkU,NkV ). For the same reason, if
we have two pairs of good open covers (U, V ) ⊆ (U ′, V ′),
then the isomorphisms (WkU,WkV ) → (NkU,NkV )
and (WkU

′,WkV
′) → (NkU

′, NkV
′) commute with

the inclusions at the homotopy level (and thus also in
homology). This last fact is sometimes known as the
Persistent Nerve Lemma in the special case of k = 0 [3].
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