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Computing the Shift-Invariant Bottleneck Distance for Persistence Diagrams

Don Sheehy∗ Oliver Kisielius† Nicholas Cavanna‡

Abstract

We define an algorithm that can compute the minimum
of the bottleneck distance between two persistence dia-
grams over all diagonal shifts, in O(n3.5) time. When
applied to log-scale persistence diagrams, this is a scale-
invariant version of bottleneck distance.

1 Introduction

A persistence diagram is a set of points in the plane that
describes the changes in topology of the sublevel sets of
a function. Each point’s coordinates represent the birth
and death of a topological feature. Often, persistence
diagrams are generated from other geometric data sets
and can serve as data summaries. They have risen to
prominence in topological data analysis for their ability
to capture multi-scale structure in a way that is invari-
ant to distance-preserving transformations.

The stability theory of persistence diagrams implies
that for small changes in the inputs, the persistence
diagrams will have correspondingly small changes with
respect to the bottleneck distance. This distance is de-
fined in terms of a minimal matching between two di-
agrams that allows points to be matched with the di-
agonal. This distance is used as the foundation of all
approximation results in persistent homology.

Persistence diagrams from metric inputs are sensitive
to scaling of the input data. One way to combat this is
to use log-scale persistence diagrams, as in [5]. In such
a diagram, the prominence of a feature—its distance to
the diagonal—is determined by the ratio of the death
and birth times of the original diagram. This eliminates
the artificial inflation of prominence that would result
from a change in units.

Even log-scale persistence diagrams cannot recognize
that two diagrams are generated by the same metric
input measured in different units. Although the promi-
nence of the features will remain the same, the two dia-
grams will differ by a shift along the diagonal. To resolve
this, we introduce a new pseudometric, the shifted bot-
tleneck distance on persistence diagrams that minimizes
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over all possible shifts, thus adding scale-invariance to
the resulting metric space of diagrams. In the language
of Euclidean geometry, this makes persistent homology
useful not only for congruence but also similarity.

We give the formal definition of the shifted bottle-
neck distance and the proof of its metric properties. It
is stable in the sense proven for bottleneck distance in
[2]. Then, we show how to compute the distance in
polynomial time.

1.1 Persistent Homology—A Quick Example

The results in this paper do not depend on a deep un-
derstanding of persistent homology, and we refer the
reader to the accessible survey by Edelsbrunner and
Morozov [3] for more background. We give a simple
example here to show a common way that geometric
points are turned into persistence diagrams that cap-
ture multiscale structure.

For the point set P shown in Figure 1, we will com-
pute the persistent homology of the sublevel sets of the
function rP : R2 → R, which is the distance to the set
P :

rP (x) = min
p∈P
‖x− p‖. (1)

The sublevel sets of rP are topologically equivalent to
subcomplexes of the Delaunay triangulation of P . As
one considers larger scales (i.e. sublevels of rP for larger
thresholds), one obtains larger and larger subcomplexes
of Del (P ). The persistence algorithm will convert this
growing sequence of complexes into a persistence dia-
gram, Dgm(rP ), as shown in Figure 2. Each point in
Dgm(rP ) is a pair (b, d) representing the birth and death
of a topological feature. In general, for a filtration based
on distance from a finite point set, one can use log-scale
diagrams for features of any dimension except 0. The
eye-catching features of P—two cycles—appear at dif-
ferent scales, and in the original persistence diagram,
the inside of the big cycle dwarfs the other features. In
the log-scale diagram, both cycles are prominent. Both
diagrams are shown in Figure 2.

2 Defining Shifted Bottleneck Distance

The only distance we consider between points in the
plane is the infinity metric, d∞.

d∞ ((x, y), (x′, y′)) = max{|x− x′|, |y − y′|} (2)
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Figure 1: A point set P with its Delaunay triangulation
Del (P )

Figure 2: Persistence diagram from the filtration of P .
Each point is a (birth, death) pair. On the left is the
original persistence diagram. On the right is the log-
scale diagram. The two cycles look similarly prominent
on the log-scale.

2.1 Shifted Points and Shifted Bottleneck Distance

Fix p = (x, y), a point in the plane, and fix s ∈ R.
Define the image of p under shift s as

ps = (x+ s, y + s). (3a)

Define the image of an entire multiset A of points in R2

under shift s as the multiset

As = {ps | p ∈ A}. (3b)

If p is an off-diagonal point, then δ(p) denotes the or-
thogonal projection of p onto the diagonal.

δ((x, y)) = (
x+ y

2
,
x+ y

2
) (4)

Define ∆, the diagonal, to be the multiset containing
each point (x, x) in R2 with infinite multiplicity.

Let A be a finite multiset in the plane, with x < y
for all (x, y) in A. Denote by Â the infinite persistence
diagram A ∪ ∆. We assume all persistence diagrams
have finitely many off-diagonal points.

For two multisets of points A and B in Rd, the bot-
tleneck distance dB (A,B) is defined as follows:

dB (A,B) = min
M

max
〈a,b〉∈M

d∞ (a, b) (5)

where M ranges over all perfect matchings between A
and B.

For multisets A and B of points in the plane, define
the shifted bottleneck distance of A and B:

dSB (A,B) = min
s∈R

dB (As, B) (6)

Given finite multisets A and B, our algorithm com-
putes dSB (Â, B̂).

Lemma 1 If A and B are finite multisets of points,
then dSB (A,B) is well-defined.

If A and B are finite multisets of points with x < y
for all (x, y) in A ∪B, then dSB (Â, B̂) is well-defined.

Proof. Let r = infs∈R dB (As, B). We need to show
dB (As, B) = r for some real shift s.

It’s clear that dB (As, B) is a continuous function of
s. This means it is sufficient to demonstrate a closed,
bounded set S such that r = infs∈S dB (As, B). The set

S =
⋃

〈a,b〉∈A×B

{s ∈ R | d∞ (as, b) ≤ r} (7)

will suffice. S is closed and bounded because it is a
finite union of closed intervals.

We show that dSB (Â, B̂) is well-defined by a similar
argument. Let r̂ = infs∈R dB (Âs, B̂).

We can assume that A and B are nonempty and that
r̂ < maxp∈A∪B d∞ (p, δ(p)), because otherwise there is
nothing to show. With that assumption, we use the
same argument as before, with the same set S. �

If (6) used inf instead of min, then dSB might be well-
defined for more inputs. However, it is useful to know
that there always exists some s such that

dSB (Â, B̂) = dB (Âs, B̂).

Lemma 2 Let X, Y , and Z be persistence diagrams or
finite sets of points.

dSB (X,Z) ≤ dSB (X,Y ) + dSB (Y, Z) (8)

In other words, shifted bottleneck distance satisfies the
triangle inequality.

Proof. Let s0 and s1 be shifts such that

dSB (X,Y ) = dB (Xs0 , Y ) (9)

dSB (Y, Z) = dB (Ys1 , Z) (10)

Since dB is a metric, we have

dB (Xs0+s1 , Z) ≤ dB (Xs0+s1 , Ys1) + dB (Ys1 , Z) (11)

= dB (Xs0 , Y ) + dB (Ys1 , Z) (12)

= dSB (X,Y ) + dSB (Y,Z) (13)

(We reach (12) by applying (3a), and we get (13) by
applying (9) and (10).) Now we apply (6) to get (14).

dSB (X,Z) ≤ dB (Xs0+s1 , Z) (14)

Combining (13) and (14) yields (8). �
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It’s typical to compare two persistence diagrams us-
ing bottleneck distance, thanks to the following stability
result proven in [2].

Let Dgm(f) denote the persistence diagram of sub-
level sets of f . The main theorem of [2] states that,
assuming some conditions on the topological space X
and the continuous functions f, g : X → R, we have

dB (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ (15)

Since it’s obvious that in general dSB (Â, B̂) ≤
dB (Â, B̂), the stability result by [2] must hold for dSB

as well:

Theorem 3 Let X be a topological space X, and let
f, g : X → R be functions. If X, f , and g satisfy the
conditions for the main stability result of [2], then we
have the same result for shifted bottleneck distance.

dSB (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ (16)

2.2 Related Work

We make use of some ideas from prior work concerning a
different pseudo-metric, which we’ll call general shifted
bottleneck distance, or dGSB.

dGSB (X,Y ) = min
t∈R2

dB ({x+ t | x ∈ X}, Y ) (17)

Here X and Y are finite sets of points in the plane.
The earliest relevant algorithm for dGSB is by Alt

et al. in [1]. They compute dGSB in time O(n6 log n).
To do this, they first make an O(n6) time decision
algorithm that, given X, Y , and r, tests whether
dGSB (X,Y ) ≤ r. Then they generate and sort all O(n6)
possible answers and find the correct answer with a bi-
nary search.

One idea of theirs that we adopt is their subroutine
in which a bipartite matching is repeatedly maximized
(and pruned) while the set of available edges changes
incrementally. This involves O(n4) invocations of the
Hopcroft-Karp augmenting paths algorithm at a cost of
O(n2) time per augmenting path. That’s lower than the
cost of computing a matching from scratch O(n4) times.

Efrat et al. improved this result by using geometry
to optimize the augmenting-path routine [4]. They use
near-neighbor structure to represent edges implicitly
during the graph searches of the Hopcroft-Karp, which
results in running time of log n per node of the graph,
and thus O(n log n) per augmenting path. Like Alt et
al., they find O(n4) total augmenting paths, so their
algorithm runs in O(n5 log n) time.

Efrat et al. also use the optimized Hopcroft-Karp al-
gorithm to compute bottleneck distance between finite
point sets [4], and Kerber et al. use the same technique
to compute bottleneck distance between persistence di-
agrams in O(n1.5 log n) time [6].

To minimize dB over all two-dimensional shifts, Alt
et al. pay quadratic time just to reduce the problem to
a one-dimensional problem in polar coordinates. Their
key idea is to guess (O(n2) times) which edge is the
bottleneck. Knowing that 〈x, y〉 ∈ X × Y is the bot-
tleneck, you can test whether dGSB (X,Y ) ≤ r by test-
ing only shifts t such that d∞ (x+ t− y) = r. (This
works for Euclidean distance as well.) Then only a one-
dimensional value, the angle from y to x+t, is unknown.
And so they compute O(n2) critical angles at which an-
other edge has value exactly r, and they check for a
matching at each critical angle.

Our algorithm is faster. Since we compute dSB, we
have a one-dimensional parameter from the beginning,
the shift, so we need not spend O(n2) immediately. Fur-
thermore, in our setting we can process the critical shifts
only once, reducing the radius and reordering the crit-
ical shifts on the fly. Because we needn’t perform a
binary search, our full algorithm resembles the decision-
only version of the other algorithms.

3 Background

Throughout the remaining discussion we refer to A and
B, the finite input multisets to our algorithm. These
are to be distinguished from the infinite sets Â and B̂.

3.1 Diagonal-Perfect Matchings

Edges with at least one end on the diagonal are called
diagonal edges. Edges in A×B are non-diagonal edges.

A finite matching M between Â and B̂ is diagonal-
perfect if the degree in M of each point in AtB equals
the multiplicity of that point. For such a matching M ,
the value of M is the minimum, over all shifts, of the
greatest edge length in M .

value (M) = min
s∈R

max
〈a,b〉∈M

d∞ (as, b)

An r-matching is a diagonal-perfect matching M be-
tween Â and B̂ with value (M) = r. Clearly such a
matching is a certificate that dSB (Â, B̂) ≤ r. A less-
than-r-matching is an r′-matching for some r′ < r.

If M is a diagonal-perfect matching between Â and B̂,
then the union of M with any perfect matching from ∆
to ∆ is a perfect matching. In particular, if you extend
M by adding edges of the form 〈x, xs〉 ∈ ∆, where s is
the optimal shift for M , then the value of the resulting
perfect matching is value (M).

As proven in [6], if an r-matching exists, then one
exists that contains no “skew” diagonal edges. A non-
skew diagonal edge is an edge 〈p, δ(p)〉 or 〈δ(p), p〉. This
includes 〈p, p〉 where p = δ(p).
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3.2 Working with the Diagonal

The addition of points on the diagonal in the definition
of persistence diagrams is useful for stability results, but
requires special consideration in our algorithm. Bot-
tleneck distance between diagrams can be reduced to
bottleneck distance between finite sets using (18).

dB (Â, B̂) = dB (A ∪ δ(B), B ∪ δ(A)) (18)

However, this does not work for shifted bottle-
neck distance. It is not true that dSB (Â, B̂) =
dSB (A ∪ δ(B), B ∪ δ(A)), because you can’t match B
to the shifted image δ(B)s or match As to δ(A). In-
stead, we must handle the diagonal as a special case.
As noted in [6], it is faster to give the diagonal spe-
cial treatment, because all but O(n) edges involving the
diagonal can be ignored.

Diagonal-to-Diagonal Edges Augmenting paths dis-
covered by the Hopcroft-Karp algorithm can include
diagonal-to-diagonal (∆-to-∆) edges. Because Â and
B̂ include every point of the diagonal with infinite mul-
tiplicity, the length of the longest ∆-to-∆ edge in any
matching can be made arbitrarily small via augment-
ing paths in ∆ × ∆. This lets us consider the length
of ∆-to-∆ edges to be zero. The diagonal parts of Â
and B̂ form a complete bipartite graph on zero-length
edges. As a result, we represent Â∩∆ and B̂∩∆ as two
nodes ∆A and ∆B , both with infinite multiplicity. We
identify any edge 〈a, δ(a)〉 with 〈a,∆B〉, and similarly
we identify 〈δ(b), b〉 with 〈∆A, b〉.

As noted in [6], the near-neighbor search structure
(used in the optimized Hopcroft-Karp algorithm) can
be adapted to handle ∆A and ∆B .

4 A Kinetic Data Structure Approach

The main algorithm will look at an increasing sequence
of shifts. At different shifts, edges will appear or disap-
pear. These are the events we want to track. Moreover,
as we discover better matchings, our upper bound on
the radius r decreases. Changing the radius reorders
future events, i.e. the partition Pr. In this section, we
will define the events and introduce an event queue that
provides access to the events in the correct order.

4.1 Searching for a Better Matching

Let r be an upper bound on dSB (Â, B̂). The left shift λ
of a non-diagonal edge 〈(ax, ay), (bx, by)〉 at radius r is

λ(〈(ax, ay), (bx, by)〉, r) = max{bx− r− ax, by − r− ay}.

Similarly, the right shift ρ is

ρ (〈(ax, ay), (bx, by)〉, r) = min{bx + r− ax, by + r− ay}.

For any edge e = 〈a, b〉 and shift s such that d∞(as, b) <
r, we have λ(e, r) < s < ρ (e, r). Let Pr denote the set
of all left and right shifts, i.e.

Pr = {λ(e, r) | e ∈ A×B} ∪ {ρ (e, r) | e ∈ A×B}

If s0, . . . , sk are the shifts of Pr, where s0 < · · · < sk,
then intvlPr is the set of open intervals {(si, si+1) |
i ∈ {0, . . . , k − 1}}.

The set of available non-diagonal edges for a shift s
and radius r is:

E(r, s) = {〈a, b〉 ∈ A×B | d∞ (as, b) < r}

At radius r, the set of available non-skew diagonal edges,
which includes 〈∆A,∆B〉 when r > 0, is:

D(r) = {e ∈ A× {∆B} ∪ {∆A} ×B ∪ {〈∆A,∆B〉}
| d∞(e) < r}

For each interval (si, si+1) in intvlPr, we have a
graph

G(r, si) = E(r,
si + si+1

2
) ∪ D(r).

The graph contains the diagonal edges and the avail-
able non-diagonal edges at a shift inside the interval
(si, si+1). The choice of the midpoint is arbitrary, and
indeed, G(r, si) = E(r, s) ∪ D(r) for any si < s < si+1.
This implies the following lemma. (Proofs of these facts
can be found in the appendix.)

Lemma 4 If M is a less-than-r-matching, then M ⊆
G(r, λ(e, r)) for some e in A×B.

Lemma 5 For any edge e and radii r′ < r, we have
G(r′, λ(e, r′)) ⊆ G(r, λ(e, r)).

4.2 The Event Queue

In this section, we will describe the event queue data
structure. The events provided by this structure are L-
events and R-events. An event e of either type stores
an edge e.edge. An L-event also stores a shift e.shift
such that G(r, λ(e.edge, r)) = E(r, e.shift) ∪ D(r).

The event queue Q holds three stacks of edges. The
stack Q.D contains all non-skew diagonal edges, including
〈∆A,∆B〉, in decreasing order by length. (Longer edges
are popped first.) The stacks Q.L and Q.R contain the
edges of A×B sorted increasing by λ and ρ respectively
(at radius 0). The order within those stacks does not
depend on the radius, because for any x, r ∈ R, λ(e, r+
x)− λ(e, r) = x and ρ (e, r − x)− ρ (e, r) = x.

The method Q.nextevent(r) goes like this: If the top
of Q.D has length r or greater, return an R-event for
Q.D.pop(). If ρ (Q.R, r) ≤ λ(Q.L, r), return an R-event for
Q.R.pop(). Otherwise, return an L-event for Q.L.pop().
Also remove from Q.L any edges with the same left shift
as the edge popped.
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Input: Event queue Q, radius r
1 if |Q.D| > 0 and d∞ (Q.D.top()) ≥ r then
2 return RightEvent(edge← Q.D.pop())

3 if ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r) then
4 return RightEvent(edge← Q.R.pop())

5 Let e← Q.L.pop()
6 while |Q.L| > 0 and λ(e, 0) = λ(Q.L.top(), 0) do
7 Q.L.pop()

8 Let t← ρ (Q.R.top(), r)
9 if |Q.L| > 0 then

10 Set t← min{t, λ(Q.L.top(), r)}
11 return

LeftEvent(edge← e, shift← (λ(e, r) + t)÷ 2)

Algorithm 1: Q.nextevent(r)

Theorem 6 Let Q be the event queue, and let r1 ≥ r2 ≥
· · · ≥ rn be a nonincreasing sequence of radii. Say that
Q.nextevent(ri) is called for i from 1 to n in order, and
suppose the call to Q.nextevent(rn) returns an L-event
whose shift is s. Then after the sequence of calls, we
have the following.

D(rn) = Q.D (19)

E(rn, s) = Q.R \ Q.L (20)

Here, Q.L, Q.R, and Q.D are treated as sets.

The proof is in the appendix.

Corollary 7 A modified version of Theorem 6
holds, where in the sequence of operations,
e ← Q.nextevent(r) may be followed immediately
by Q.L.push(e.edge), provided e is an L-event.

Proof. Reinserting the edge undoes the previous oper-
ation and has no other side effects. �

4.3 Reducing the Radius

To reduce the radius after we find a perfect matching,
we use the method Q.newradius(), which returns

max{d∞(Q.D.top()),
1

2
(λ(Q.L.top(), 0)−ρ (Q.R.top(), 0))}.

Lemma 8 The invocation Q.nextevent(r) returns an
R-event if and only if r ≤ Q.newradius().

Proof. Consider Algorithm 1. Q.nextevent(r) re-
turns an R-event from line 2 if and only if r ≤
d∞(Q.D.top()). Otherwise, Q.nextevent() returns an
R-event if and only if ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r).
In fact ρ (Q.R.top(), r) ≤ λ(Q.L.top(), r) exactly when
r ≤ 1

2 (λ(Q.L.top(), 0) − ρ (Q.R.top(), 0)), with equal-
ity only when r = 1

2 (λ(Q.L.top(), 0) − ρ (Q.R.top(), 0)).
Thus r.nextevent() an L-event is returned, by line 11,
if and only if r > Q.newradius(). �

Lemma 9 Suppose the event queue Q is in a state such
that Q.nextevent(r) would return an L-event with shift
s, and there is a less-than-r-matching M in G(r, s).
Then

r > Q.newradius() ≥ value (M) ≥ dSB (Â, B̂).

Proof. Lemma 8 gives us r > Q.newradius(), since
Q.nextevent(r) would return an L-event. For any r >
r′ > Q.newradius(), call s′ the shift of the L-event re-
sulting from Q.nextevent(r′). Because Q.nextevent(r)
and Q.nextevent(r′) have equivalent effects on the
state of Q, Theorem 6 says G(r′, s′) = G(r, s). Thus
r′ > value (M) for any r′ > Q.newradius(), and
so Q.newradius() ≥ value (M). The last inequality,
value (M) ≥ dSB (Â, B̂), holds for any diagonal-perfect
M . �

5 The Algorithm

Here we state the main algorithm and prove its correct-
ness and running time in the real RAM model.

5.1 Algorithm for Shifted Bottleneck Distance

Algorithm 2 computes the shifted bottleneck distance
as follows. Let Q be the event queue. Set the radius r to
be an upper bound on dSB (Â, B̂), say the length of the
longest non-skew diagonal edge. Maintain a bipartite
matching M, initially empty, between Â and B̂. While
Q is not empty, get the next event e from Q. If e is
an R-event, remove e.edge from M. Otherwise, e is an
L-event: Augment M using the geometrically-optimized
version of Hopcroft-Karp (as in [4] and [6]), and if M is
now diagonal-perfect, then reinsert e.edge into Q.L and
reduce r to Q.newradius(). Finally, return r, which now
equals dSB (Â, B̂).

Input: Multisets A and B representing
diagrams Â and B̂

1 Let r ← max {d∞ (x, δ(x)) | x ∈ A ∪B}
2 Let Q be the event queue
3 Let M be an empty matching
4 while Q.L, Q.R and Q.D are nonempty do
5 Let e← Q.nextevent(r)
6 if e is an R-event then
7 Remove e.edge from M

8 else
9 Use augmenting paths to maximize M at

shift e.shift and radius r
10 if M is diagonal-perfect then
11 Q.L.push(e.edge)
12 r ← Q.newradius()

13 return r

Algorithm 2: dSB (Â, B̂)
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5.2 Correctness in the Real RAM Model

Lemma 10 After line 9 executes, M is a maximum
matching in G(r, λ(e.edge, r)).

Proof. If M ⊆ G(r, λ(e.edge, r)) before line 9, then M is
a maximum matching in G(r, λ(e.edge, r)) after line 9
because the augmenting path algorithm .

It will suffice to show that M ⊆ G(r, λ(e.edge, r))
whenever the execution reaches line 9. We proceed by
induction. For the base case, in the first execution of
line 9, the matching M is initially empty.

In the inductive case, we have M ⊆ G(r, λ(e.edge, r))
after line 9. By Corollary 7, this is equivalent to M ⊆
Q.D ∪ Q.R \ Q.L. This still holds just before line 9 next
executes, because Q.L has not increased and every edge
popped from Q.D or Q.R has been removed from M. �

Theorem 11 Given persistence diagrams A and B, Al-
gorithm 2 outputs dSB (Â, B̂) in time O(n3.5) where
n = |A|+ |B|.

Proof. Each iteration makes progress toward termina-
tion. For iterations where we reinsert an edge into Q.L,
we set r to Q.newradius(), guaranteeing an R-event will
be processed next (Lemma 8). In all other cases, we
shrink Q.L, Q.R, or Q.D. Thus the outer loop executes at
most 2|A||B| + |A| + |B| times. As in [6], line 9 takes
time O((|A| + |B|)1.5) per augmenting path. We find
at most |A| + |B| paths the first time we augment the
matching, and subsequently we find at most one path
per event, as in [4]. Thus the total running time is
O((|A|+ 1)(|B|+ 1)(|A|+ |B|)1.5), i.e. O(n3.5).

Initially, r = value (D(∞)) ≥ dSB (Â, B̂). (Note
D(∞) is diagonal-perfect.) Because M is diagonal-
perfect at line 12, Lemma 9 tells us that r ≥ dSB (Â, B̂)
always and that r always decreases at line 12.

We reinsert an edge e in Q.L unless G(r, λ(e, r))
contains no diagonal-perfect matching. When the ra-
dius decreases from r to r′, we get G(r′, λ(e, r′)) ⊆
G(r, λ(e, r)) for each edge e by Lemma 5. So by in-
duction, there is never a diagonal-perfect matching in
G(r, λ(e, r)) for any edge e in A × B \ Q.L at the start
of the loop. The base case is vacuous.

When we exit the loop, we have G(r, λ(e, r)) = D(r)
for every edge e in Q.L. (This is vacuous if Q.L is
empty; if Q.D is empty, then r = 0; otherwise, Q.R is
empty, and Theorem 6 applies.) So we know there is no
diagonal-perfect matching in G(r, λ(e, r)) for any edge
e in A × B. Thus r ≤ dSB (Â, B̂) by Lemma 4. Now
r ≤ dSB (Â, B̂) ≤ r, and so r = dSB (Â, B̂). �

5.3 A Constant-Factor Improvement

At line 6 of Algorithm 1, whenever several edges in
Q.L have the same left shift, we discard all but one of
them. With negligible extra effort, we set e to be the

edge maximizing ρ (e, 0). Then before line 9 of Algo-
rithm 2, we test, for the event e, whether λ(e.edge, r) ≥
ρ (e.edge, r), and if so we skip the rest of the iteration.
(In particular, we skip the expensive line 9.)

If λ(e.edge, r) ≥ ρ (e.edge, r), then e.edge is not
in G(r, λ(e.edge, r)), and neither are any other edges
with the same left shift as e.edge. This means
G(r, λ(e.edge, r)) ⊆ G(r, λ(e′, r)), where e′ is the pre-
vious edge popped from Q.L. Since we have no hope of
finding a diagonal-perfect matching, it is sound to skip
the rest of the iteration.

6 Implementation

We have implemented Algorithm 2 with Python 3. Our
near-neighbor structure uses a kd-tree. Our implemen-
tation is slow for even small point sets. (This is consis-
tent with the O(n3.5) running time.) For inputs of sizes
32 (i.e. |A| = |B| = 32), 64, and 128, the computation
takes about two seconds, 15 seconds, and two minutes.
To compute shifted bottleneck distance for medium or
large point sets, we will need a faster algorithm.

Our implementation needed some tweaking to ac-
count for floating point errors. The research-grade code
is available on request.
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Appendix

Lemma 12 If two shifts s0 and s1 lie in the same (open)
interval of intvl (Pr), then E(r, s0) = E(r, s1).

Proof. Suppose (WLOG) that s0 < s1 and that we have
some edge e = 〈a, b〉 ∈ E(r, s0) \ E(r, s1). Then, since
d∞ (as, b) is a continuous function of s, the intermediate
value theorem tells us there is a shift s0 < s′ < s1 such that
d∞ (as′ , b) = r.

This s′ must be either λ(e, r) or ρ (e, r), and so s0 and s1
do not lie in the same interval of intvl (Pr). �

There are a few prerequisites to Lemma 4.

Lemma 13 Let si−1 < s < si < s′ < si+1 ∈ R, where
si−1, si, si+1 are consecutive elements of Pr. Then E(r, si) ⊆
E(r, s) ∩ E(r, s′).

Proof. Suppose for contradiction there is an edge e = 〈a, b〉
in E(r, si) \ E(r, s). Lemma 12 tells us e /∈ E(r, t) whenever
si−1 < t < si. Thus for the continuous function f(t) =
d∞(at, b), we have f(t) ≥ r for si−1 < t < si but f(si) < r,
which is impossible. Therefore E(r, si) ⊆ E(r, s).

A similar argument shows E(r, si) ⊆ E(r, s′). �

Lemma 14 Let si < si+1 < si+2 be consecutive elements
of Pr such that si+1 is not the left shift of any edge. If
si < s < si+1 < s′ < si+2, then E(r, s′) ⊆ E(r, s).

Consequently, if there is no diagonal-perfect matching in
G(r, si), then there is no such matching in G(r, si+1).

Proof. The statement E(r, s′) ⊆ E(r, s) holds because if we
have an edge e ∈ E(r, s′)−E(r, s), then λ(e, r) = si+1, which
violates the premise.

The second statement is immediate. �

Proof. [Lemma 4] Let M be a less-than-r-matching. We
know M ⊆ E(r, s) ∪ D(r) for some shift s. Consider two
cases:

1. minPr < s < maxPr. Lemma 13 lets us assume
WLOG that si < s < si+1 for consecutive elements
si, si+1 of Pr. Then Lemma 12 tells us E(r, s)∪D(r) =
G(r, si).

If si is not a left shift, we can apply Lemma 14 to
show that M ⊆ G(r, si−1). We iterate this until we
reach a left shift. (If we never reach a left shift, then
M ⊆ D(r).)

2. s ≤ minPr or s > maxPr. This means E(r, s) = ∅, so
M ⊆ D(r) ⊆ G(r, t) for any t in Pr.

�

Proof. [Lemma 5] Pick some small offset t such that
G(r′, λ(e, r′)) = E(r′, λ(e, r′) + t)∪D(r′) and G(r, λ(e, r)) =
E(r, λ(e, r) + t) ∪ D(r). It is clear that D(r′) ⊆ D(r).

Let e′ be an edge in E(r′, λ(e, r′) + t). This means

λ(e′, r′) < λ(e, r′) + t < ρ (e′, r′).

Subtracting (r − r′) from all three sides yields

λ(e′, r) < λ(e, r) + t < ρ (e′, r)− 2(r − r′).

This means e′ ∈ E(r, λ(e, r) + t) ⊆ G(r, λ(e, r)), since r −
r′ > 0. Thus G(r′, λ(e, r′)) ⊆ G(r, λ(e, r)). �

Proof. [Theorem 6] Let {ei}1≤i≤n be the results of the n
successive calls Q.nextevent(ri).

Since en is an L-event, we know the condition at line 1 is
false during the call Q.nextevent(rn). Therefore, there are
no edges in Q.D of length rn or less, and so Q.D ⊆ D(rn).
Because ri ≥ rn for all i < n, we have only popped edges
longer than rn from Q.D. Thus D(rn) ⊆ Q.D, and (19) follows.

Because the order of Q.L is independent of the radius, and
because we pop all edges with the same left shift as en.edge,
we have

Q.L = {e ∈ A×B | λ(e, rn) > λ(en.edge, rn)}.

If Q.L is nonempty, then en.shift < λ(Q.L.top(), rn). Thus

Q.L = {e ∈ A×B | λ(e, rn) > en.shift}. (21)

Let

S = {e ∈ A×B | λ(en.edge, rn) < ρ (e, rn)}.

We will prove Q.R = S, which implies

Q.R = {e ∈ A×B | en.shift < ρ (e, rn)}. (22)

Because the call Q.nextevent(rn) returns an L-event, we
know Q.R ⊆ S because of line 3. Fix an edge e in A×B \Q.R.
Let ei be the R-event such that e = ei.edge. At the
time when Q.nextevent(ri) returns ei, we have ρ (e, ri) ≤
λ(Q.L.top(), ri) ≤ λ(en.edge, ri). Because ri ≤ rn, we get
ρ (e, rn) ≤ λ(en.edge, rn), which means e is not in S. This
means S ⊆ Q.R, and so S = Q.R.

From (21) and (22), we get

Q.R \ Q.L = {e ∈ A×B | λ(e, rn) < en.shift < ρ (e, rn)}
= E(rn, en.shift).

�


