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Abstract: We generalize the local-feature size definition of adaptive sampling used in surface
reconstruction to relate it to an alternative metric on Euclidean space. In the new metric, adaptive
samples become uniform samples, making it simpler both to give adaptive sampling versions of
homological inference results and to prove topological guarantees using the critical points theory
of distance functions. This ultimately leads to an algorithm for homology inference from samples
whose spacing depends on their distance to a discrete representation of the complement space.
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1. Introduction

1.1. From Points to Topology

Both surface reconstruction and homology inference are algorithmic problems that take points
as input and produce a topological representation of the underlying space from which the points
were drawn. In surface reconstruction, one often wants a homeomorphic reconstruction in the form
of a triangulation, whereas in homology inference, it suffices to compute the homology groups.
Although similar in many respects the general trend is that with weaker conditions on the input
(i.e. noisier samples) one can only hope for weaker guarantees on the output (homology rather than
homeomorphism). There is one aspect of these theories that directly contradicts this trend: Many
surface reconstruction algorithms are able to work with an adaptive sample, while most homology
inference algorithms require a uniform1 sample. An adaptive sample has a density that adapts to
some local sizing function. Thus, areas that require higher fidelity will have higher density (and
smaller scale) while areas that can get by with less fidelity, will have lower density (and larger scale).

There have been some notable works that have bridged this gap between surface reconstruction
and homology inference for adaptive samples. Most theoretically guaranteed surface reconstruction
algorithms assume an input that is sufficiently dense with respect to the distance to the medial axis,
a kind of skeleton describing the complement of the underlying shape. Cazals et al. [1] introduced
the conformal alpha shape filtration as a way to build triangulations at different scales that have local
connectivity related to the local feature size. Although their stated goal was surface reconstruction,
the work employs many of the methods of homology inference. Chazal and Lieutier [2,3] gave a
more direct generalization of methods in surface reconstruction with adaptive samples to homology
inference, achieving some guarantees for smooth manifolds assuming both upper and lower bounds
on the density. Dey et al. [4] give a homology inference algorithm algorithm for manifold data that
attempts to sample a subset of the medial axis in order to approximate the local feature size. This

1 Here and throughout, we use “uniform” in the Hausdorff sense, not the statistical sense.
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work was the main motivation for the current paper, and we have adopted their notation of X for
the space and L for the approximation to the complement space. We extend all these works by providing
guaranteed homology inference for a much more general class of samples and spaces; we don’t require the space
to be a manifold or the sample to adapt to the medial axis.

1.2. From Surface Reconstruction to Homology Inference

To reconstruct a surface from a point set, one needs the sample to be sufficiently dense with
respect to not just the local curvature of the surface, but also the distance to parts of the surface that are
close in the embedding but far in geodesic distance. Otherwise, algorithms have no way of identifying
which geometrically close sample points correspond to local neighborhoods in the surface. Adaptive
sampling with respect to the so-called local feature size as introduced by Amenta and Bern [5] neatly
characterizes such “good” samples and was then used in many later works on surface reconstruction
with topological guarantees [6]. There is an extensive literature on the problem in high dimensions (see
[7,8] for recent examples) and the problem remains an active research area. Such adaptive samples are
in contrast to uniform samples for which a single parameter determines the density. That parameter is
usually driven by the minimum of the local feature size and results in a much larger sample.

Later work on generalizations of surface reconstruction and homology inference related the
topology of unions of balls centered at a sample X̂ near the unknown set X to the topology of X itself.
The most well-known such results were by Niyogi et al. [9,10]. A union of balls with a fixed radius
can be viewed as a sublevel set of the distance function to X̂. If we have an adaptive sample, then we
would like to scale the radii of the balls as well. However, if the sample is adaptive with respect to
a local feature size defined as the distance to an unknown set L, another approximation L̂ near L is
necessary. Indeed, one interpretation of some Voronoi-based surface reconstruction algorithms is that
an approximation L̂ to the medial axis L is computed from the Voronoi diagram of the sample X̂ of the
unknown surface X.

We present a new perspective on adaptive samples. For any pair of disjoint, compact sets X
and L, we define a metric on Rd \ L with the property that a uniform sample of X in the new metric
corresponds to an adaptive sample in the Euclidean metric. We call this the metric induced by L
or simply the induced metric for short. This new metric can also be extended to an arbitrarily close
Riemannian metric over the same domain. Our main motivation is to connect adaptive sampling theory
to the critical point theory of distance functions used extensively to prove topological guarantees
in topological data analysis [2,11,12]. That theory gives natural topological equivalences between
sublevel sets of distance functions to compact sets in Riemannian metrics. Thus, we propose to use the
induced metric as the underlying ideal object and then relate it to a union of Euclidean balls constructed
from approximations of X and L. Our metric can be viewed as a smoothed version of a metric used
by Clarkson [13]. Our new formulation reveals connections with work on path planning [14,15] and
density-based distances [16,17]. These are all constructions where one looks at conformal change of
metrics induced by subsets of Euclidean space.

1.3. Overview

We lay out the main objects of study in Section 2. This includes the induced metric and a discrete
approximation. Throughout the paper, we will relate these two objects or variations thereof for different
purposes. In Section 3.1, we prove the relationship between the adaptive samples used in surface
reconstruction and uniform samples in the induced metric. The definition of the induced metric does
not lend itself to direct computation. So, in Section 3.2, we bound the interleaving distance between
the induced metric and its discrete approximation. This interleaving is then used in Section 3.3 to give
a homology inference algorithm, that is guaranteed to recover the homology of a sublevel set of the
induced metric under certain sampling conditions.
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2. Methods

Let L and X be compact subsets of Rd with respect to the Euclidean metric. For x, y ∈ Rd,
define Path(x, y) to be the set of bounded piecewise-C1 paths from x to y, parametrized by Euclidean
arc-length. Similarly, Path(x, S) :=

⋃
s∈S

Path(x, s) denotes all paths from x to a set S.

For any compact set L ⊆ Rd, define fL(·) : Rd → R by

fL(x) := min
`∈L
‖x− `‖.

Define
dL(x, y) := min

γ∈Path(x,y)

∫
γ

dz
fL(z)

.

The length of a unit-speed path γ : [0, a]→ Rd is denoted as

|γ| :=
∫

γ
dz =

∫ a

0
dt.

For y ∈ Rd, define
f L
X(y) := dL(y, X) = min

x∈X
dL(y, x),

and

f̂ L
X(y) := min

x∈X

‖y− x‖
fL(x)

.

Note that f L
X(·) is a distance function, while f̂ L

X(·) is not. The latter function can be interpreted as
a first-order approximation of the former.

Definition 1. For any compact set X ⊂ Rd \ L, for some compact set L ⊂ Rd, the α-offsets with respect to dL

are
AL

X(α) := {x ∈ Rd | f L
X(x) ≤ α}.

The distance function fL(·) can be transformed into an arbitrarily close smooth function
f̃L(·) [18], yielding a Riemannian metric d̃L defined in an identical manner as dL. From this, one
has corresponding α-offsets ÃL

X(α) that are arbitrarily close to AX
L (α). We will encounter this smoother

version in Section 3.3.
We will approximate the offsets AL

X(α) by a union of balls as follows.

Definition 2. For any compact set X ⊂ Rd \ L, for some compact set L ⊂ Rd, the approximate α-offsets
with respect to dL are

BL
X(α) := ( f̂ L

X)
−1[0, α] =

⋃
x∈X

ball(x, α fL(x)).

A useful property of f L
X(·) is that it a 1-Lipschitz function. In general, a function f between two

metric spaces (X, dX) and (Y, dY) is said to be k-Lipschitz if for all x, y ∈ X, dY( f (x), f (y)) ≤ kdX(x, y).

Lemma 1. The function f L
X is 1-Lipschitz from the metric space (Rd, dL) to R.

Proof. Fix any a, b ∈ Rd. There exists point x ∈ X and a path γ1 ∈ Path(a, x) such that f L
X(a) =∫

γ1
dz

fL(z)
. Likewise, there exists γ2 ∈ Path(a, b) such that dL(a, b) =

∫
γ2

dz
fL(z)

.

This implies that the concatenation of γ1 and γ2 is a path γ3 in Path(b, X). Thus f L
X(b) ≤∫

γ3
dz

fL(z)
≤ f L

X(a) + dL(a, b). As this holds for all a, b, we conclude that | f L
X(a)− f X

L (b)| ≤ dL(a, b) as
desired.
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We can use f L
X to the define the Hausdorff distance, which is a metric between compact sets. This

metric is useful for stating bounds on the quality, or uniformity, of a sample near a set.

Definition 3. The Hausdorff distance between two compact sets X, Y ∈ (Rd, dL) is defined as

dL
H(X, Y) = max{max

x∈X
f L
Y (x), max

y∈Y
f L
X(y)}

If the Hausdorff distance between a compact set and a sample is bounded, Lemma 2 shows their
α-offsets are interleaved at particular scales.

Lemma 2. Let X̂, X ⊆ Rd \ L be such that dL
H(X̂, X) ≤ δ. Then, for all α ≥ 0, AL

X(α) ⊆ AL
X̂
(α + δ) and

AL
X̂
(α) ⊆ AL

X(α + δ).

Proof. Let y ∈ AL
X(α) be any point. By the definition of AL

X , we have f L
X(y) ≤ α. So, there exists x ∈ X

such that dL(x, y) ≤ α. The Hausdorff assumption that dL
H(X̂, X) ≤ δ implies that for all x ∈ X, we

have f L
X̂
(x) ≤ δ. By Lemma 1, f L

X̂
(y) ≤ f L

X̂
(x) + dL(x, y) ≤ δ + α, implying y ∈ AL

X̂
(α + δ). The second

inclusion is proven by a symmetric argument.

The following is the definition of an adaptive sample we will use throughout. For the special
case when X is a manifold and L is its medial axis, it corresponds to the ε-sample used in surface
reconstruction.

Definition 4. Given a compact set L ⊂ Rd and compact sets X, X̂ ⊂ Rd \ L such that X̂ ⊆ X, we say that X̂
is an ε-sample of X, for ε ∈ [0, 1), if for all x ∈ X, there exists p ∈ X̂ such that ‖x− p‖ ≤ ε fL(x).

This definition is closely related to that of the approximate α-offsets, because if X̂ is an ε-sample
of X, then for all x ∈ X, ball(x, ε fL(x)) ∩ X̂ 6= ∅.

3. Results

3.1. Adaptive Sampling

In this section, we prove that a uniform sample in the induced metric corresponds to an adaptive
sample in the Euclidean metric and vice versa. The key to this proof is the following lemma, which
will also be used for the more elaborate interleaving results of Section 3.2.

Lemma 3. Let L ⊂ Rd be a compact set and let a, b ∈ Rd \ L. Then, the following two statements hold for all
δ ∈ [0, 1).

(i) If dL(a, b) ≤ δ then ‖a−b‖
fL(a) ≤

δ
1−δ .

(ii) If ‖a−b‖
fL(a) ≤ δ then dL(a, b) ≤ δ

1−δ .

Proof. To prove (i), we assume dL(a, b) ≤ δ. Let γ be the path in Path(a, b) such that dL(a, b) =∫
γ

dz
fL(z)

< δ. Then we have the following inequalities following from the Lipschitz property of fL.

|γ| =
∫

γ
dz = ( fL(a) + |γ|)

∫
γ

dz
fL(a) + |γ|

≤ ( fL(a) + |γ|)
∫

γ

dz
fL(z)

≤ ( fL(x) + |γ|)δ
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It follows that |γ| ≤ δ
1−δ fL(x). Because ‖a− b‖ is the length of the shortest path between a and b in

the Euclidean metric, we conclude that ‖a− b‖ ≤ |γ| ≤ δ
1−δ fL(x).

Next we prove (ii). Assume ‖a−b‖
fL(a) ≤ δ. For all points z in the straight line segment ab,

fL(z) ≥ fL(a)− ‖a− z‖ ≥ fL(a)− ‖a− b‖ ≥ (1− δ) fL(a).

This implies the following inequality.

dL(a, b) = inf
γ∈Path(a,b)

∫
γ

dz
fL(z)

≤
∫

ab

dz
fL(z)

≤ 1
(1− δ) fL(a)

∫
ab

dz

=
‖a− b‖

(1− δ) fL(a)

≤ δ

1− δ
.

We can now state the main theorem relating adaptive samples in the Euclidean metric to uniform
samples in the metric induced by a set L.

Theorem 1. Let L and X be compact sets, let X̂ ⊂ X be a sample, and let ε ∈ [0, 1) be a constant. If X̂ is an
ε-sample of X with respect to the distance to L, then dL

H(X, X̂) ≤ ε
1−ε . Also, if dL

H(X, X̂) ≤ ε < 1
2 , then X̂ is

an ε
1−ε -sample of X with respect to the distance to L.

Proof. Given x ∈ X, there exists p ∈ X̂ such that ‖x− p‖ ≤ ε fL(x). By Lemma 3, dL(x, p) ≤ ε
1−ε , so

for all x ∈ X, f L
X̂
(x) ≤ ε

1−ε . As X̂ ⊆ X, this proves dL
H(X̂, X) ≤ ε

1−ε .

Also, dL
H(X̂, X) ≤ ε < 1

2 implies that for all x ∈ X, f L
X̂
(x) ≤ ε, thus there exists p ∈ X̂ such that

dL(x, p) ≤ ε. Thus by Lemma 3 ‖x− p‖ ≤ ε
1−ε fL(x). Since ε < 1

2 , then ε
1−ε < 1, so X̂ is an ε

1−ε -sample
of X.

3.2. Interleaving

A filtration is a nested family of sets. In this paper, we consider filtrations F parameterized by a
real number α ≥ 0 so that F(α) ⊂ Rd and whenever α < β we have F(α) ⊆ F(β). Often, our filtrations
are sublevel filtrations of a real valued function f : Rd → R. The sublevel filtration F corresponding to
the function f is the defined as

F(α) := {x ∈ Rd | f (x) ≤ α}.

Definition 5. A pair of filtrations (F, G) is (h1, h2)-interleaved in an interval (s, t) if F(r) ⊆ G(h1(r))
whenever r, h1(r) ∈ (s, t) and G(r) ⊆ F(h2(r)) whenever r, h2(r) ∈ (s, t). We require that the functions
h1, h2 be nondecreasing in (s, t).

The following lemma gives us an easy way to combine interleavings.

Lemma 4. If (F, G) is (h1, h2)-interleaved in (s1, t1), and (G, H) is (h3, h4)-interleaved in (s2, t2), then
(F, H) is (h3 ◦ h1, h2 ◦ h4)-interleaved in (s3, t3), where s3 = max{s1, s2} and t3 = min{t1, t2}.

Proof. If r, h3(h1(r)) ∈ (s3, t3), then we have F(r) ⊆ G(h1(r)) ⊆ H(h3(h1(r))). Similarly, if
r, h2(h4(r)) ∈ (s3, t3), then H(r) ⊆ G(h4(r)) ⊆ F(h2(h4(r))).
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3.2.1. Approximating X with X̂

Ultimately, the goal is to relate AL
X, the offsets in the induced metric, to BL̂

X̂
, the approximate

offsets computed from approximations (or samples) to both X and L. This relationship will be given
by an interleaving that is built up from an interleaving for each approximation step. For each of the
following lemmas, let L, L̂ ⊂ Rd and X, X̂ ⊂ Rd \ (L ∪ L̂) be compact sets.

Lemma 5. If dL
H(X̂, X) ≤ ε, then (AL

X , AL
X̂
) are (h1, h1)-interleaved in (0, ∞), where h1(r) = r + ε.

Proof. This lemma is a reinterpretation of Lemma 2 in the interleaving notation.

3.2.2. Approximating the Induced Metric

It is much easier to use a union of Euclidean balls to model the sublevel sets of the distance
function f L

X . Below, we show that this is a reasonable approximation. The following results may also
be viewed as a strengthening of the adaptive sampling result of the previous section (Theorem 1).

Lemma 6. The pair (AL
X̂

, BL
X̂
) are (h2, h2)-interleaved in (0, 1), where h2(r) = r

1−r .

Proof. It will suffice to show that for r ∈ [0, 1), AL
X̂
(r) ⊆ BL

X̂
( r

1−r ), and for r ∈ [0, 1
2 ), BL

X̂
(r) ⊆ AL

X̂
( r

1−r ).
Take y ∈ AL

X̂
(r) so that f L

X̂
(y) ≤ r. Thus there exists x ∈ X such that dL(x, y) ≤ r. By Lemma 3,

this implies that ‖x− y‖ ≤ r
1−r fL(x), which implies that y ∈ BL

X̂
( r

1−r ).
Consider any point y ∈ BL

X̂
(r). For some x ∈ X, we have y ∈ ball(x, r fL(x)), so ‖x− y‖ ≤ r fL(x).

Applying Lemma 3, we have that dL(x, y) ≤ r
1−r . Finally, y ∈ AL

X̂
( r

1−r ), because f L
X̂
(y) ≤ dL(x, y).

3.2.3. Approximating L with L̂

Usually, the set L is unknown at the start and must be estimated from the input. For example,
if L is the medial axis of X, there are several known techniques for approximating L by taking some
vertices of the Voronoi diagram [5,6]. We would like to give some sampling conditions that allow us
to replace L with an approximation L̂. Interestingly, the sampling conditions for X̂ are dual to those
used for L̂: we require dX̂

H(L, L̂) ≤ ε. In other words, L̂ must be an adaptive sample with respect to the
distance to X̂.

Lemma 7. If dX̂
H(L, L̂) ≤ δ < 1, then (BL

X̂
, BL̂

X̂
) is (h3, h3)-interleaved in (0, ∞), where h3(r) = r

1−δ .

Proof. Fix any x ∈ BL
X̂
(r). There is a point p ∈ X̂ such that ‖x−p‖

fL(p) ≤ r. Moreover, there is a nearest

point z ∈ L̂ to x such that f L̂(p) = ‖p− z‖. Lemma 3 and the assumption that dX̂
H(L, L̂) ≤ δ together

imply that there exists y ∈ L such that

‖y− z‖ ≤ δ

1− δ
fX̂(z). (1)

It then follows from the definitions that

fX̂(z) = min
q∈X̂
‖z− q‖ ≤ ‖z− p‖ = f L̂(p). (2)
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So, we can bound fL(p) in terms of f L̂(p) as follows.

fL(p) ≤ ‖y− p‖ [y ∈ L]

≤ ‖y− z‖+ ‖z− p‖ [triangle inequality]

≤ 1
1− δ

f L̂(p) [by (1) and (2)]

So,

‖x− p‖
f L̂(p)

≤ ‖x− p‖
(1− δ) fL(p)

≤ r
1− δ

= h3(r).

Therefore, x ∈ BL̂
X̂
(h3(r)) and so we conclude that BL

X̂
(r) ⊆ BL̂

X̂
(h3(r)). The proof is symmetric to show

that BL̂
X̂
(r) ⊆ BL

X̂
(h3(r))

3.2.4. Putting it all together

We can now use Lemma 4 to combine the interleavings established in Lemmas 5, 6, and 7.

Theorem 2. Let L, L̂ ⊂ Rd and X, X̂ ⊂ Rd \ (L ∪ L̂) be compact sets. If dX̂
H(L, L̂) ≤ δ < 1 and dL

H(X̂, X) ≤
ε < 1, then (AL

X , BL̂
X̂
) are (h4, h5)-interleaved in (0, 1), where h4(r) = r+ε

(1−r−ε)(1−δ)
and h5(r) = r

1−δ−r + ε.

Proof. We use Lemma 4 to combine the interleavings from Lemmas 5, 6, and 7 to conclude that the pair
(AL

X , BL̂
X̂
) is (h3 ◦ h2 ◦ h1, h1 ◦ h2 ◦ h3) interleaved in (0, 1). To complete the proof, we expand h3 ◦ h2 ◦ h1

and h1 ◦ h2 ◦ h3 as follows.

(h3 ◦ h2 ◦ h1)(r) = (h3 ◦ h2)(r + δ) = h3(
r + δ

1− r− δ
)

=
r + δ

(1− r− δ)(1− ε)

(h1 ◦ h2 ◦ h3)(r) = (h1 ◦ h2)(
r

1− ε
) = h1(

r
(1− ε)(1− r

1−ε )
)

= h1(
r

1− ε− r
)

=
r

1− ε− r
+ δ

So we have that h4(r) = r+δ
(1−r−δ)(1−ε)

and h5(r) = r
1−ε−r + δ.

3.3. Smooth Adaptive Distance and Homology Inference

In the preceding sections, we have shown how to approximate (via interleaving) AL
X , the sublevels

of the distance to X in the induced metric, using a finite set of Euclidean balls, BL̂
X̂

. Now, we show
how and when such an approximation gives a guarantee about the underlying space X itself. This is
substantially more difficult, because it requires us to relate the sublevels of the induced metric to an
object we don’t have direct access to. As such, we will require some stronger hypotheses.

We will first review the critical point theory of distance functions. Then, we show how to smooth
the induced metric to an arbitrarily close Riemannian metric, rendering the critical point theory
applicable. Then, we put these together to prove the main inference result of the paper, Theorem 3.
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3.3.1. Critical Points of Distance Functions

In this section, we give a minimal presentation of the critical point theory of distance functions
to explain and motivate the results about interleaving offsets of distance functions in Riemannian
manifolds. The main fact we use is that such interleavings lead immediately to results about homology
inference (Lemma 9).

For a smooth Reimannian manifold M and a compact subset X ⊂ M, one can consider the
function fX : M→ R that maps each point in M to the distance to its nearest point in X as measured
by the metric on the manifold. The gradient of fX can be defined on M and the critical points are
those points for which the gradient is zero. The critical values of fX are those values of r such that
f−1
X (r) contains a critical point. The critical point theory of distance functions developed by Grove and

others [11] extends ideas from Morse theory to such distance functions. In particular, the theory gives
the following result.

Lemma 8 (Grove [11]). If [r, r′] contains no critical values then f−1
X ([0, r]) ↪→ f−1

X ([0, r′]) is a homotopy
equivalence.

This means that for intervals that do not contain critical values, the inclusion maps in the filtration
F(r) := { f−1

X ([0, r]) | r ≥ 0} are all homotopy equivalences and therefore induce isomorphisms in
homology. This is used to give some information about the homology of filtrations that are interleaved
with F.

We write H∗ to denote homology over a field. So, for a set X ⊆ Rd, we have a vector space H∗(X)

and for a continuous map f : X → Y, we have a linear map H∗( f ). For the canonical inclusion map
X ↪→ Y for a subset X ⊆ Y, we will denote the corresponding linear map in homology as H∗(X ↪→ Y).
The image of this map is denoted im H∗(X ↪→ Y).

Lemma 9. Let fX be the distance function to a compact set in a Riemannian manifold such that [r, r′] contains
no critical values of fX. Let F be the sublevel filtration of fX and let G be a filtration such that (F, G) are
(h1, h2)-interleaved in (r, r′). If r′ < (h2 ◦ h1 ◦ h2 ◦ h1)(r), then

im H∗(G(h1(r)) ↪→ G((h1 ◦ h2 ◦ h1)(r))) ∼= H∗(F(r)).

Proof. The interleaving and the hypotheses imply that we have the following inclusions.

F(r) ⊆ G(h1(r)) ⊆ F((h2 ◦ h1)(r)) ⊆ G((h1 ◦ h2 ◦ h1)(r)) ⊆ F((h2 ◦ h1 ◦ h2 ◦ h1)(r))

The preceding lemma implies that the maps F(r) ↪→ F((h2 ◦ h1)(r)), F((h2 ◦ h1)(r)) ↪→ F((h2 ◦ h1 ◦
h2 ◦ h1)(r)), and F(r) ↪→ F((h2 ◦ h1 ◦ h2 ◦ h1)(r)), all induce isomorphisms in homology. It follows that
im H∗(G(h1(r)) ↪→ G((h1 ◦ h2 ◦ h1)(r))) ∼= H∗(F(r)), because the inclusion of spaces in G is factored
through a space in F and it factors an inclusion of spaces, all of which are isomorphic in homology.

3.3.2. Smoothing The Metric

To apply the critical point theory of distance functions to the induced metric directly, we would
need it to be a smooth Riemannian manifold. Although, it is not smooth, we can smooth it with an
arbitrarily small change. The process, though a little technical, is not surprising, nor very difficult. It
proceeds in three steps.

1. We smooth the distance to L. This is the source of non-smoothness in the induced metric. This
replaces fL with a smooth approximation, f̃L.

2. The smoothed distance to L is used to define the smoothed induced metric d̃L analogously to the
original construction of dL.
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3. The induced distance function f L
X can then be replaced by its smoothed version f̃ L

X and the

corresponding smoothed offsets ÃL
X are then well defined.

The complete construction of the smoothed offsets is presented in Appendix A. The end result

is an interleaving between the induced offsets AL
X and the smoothed version ÃL

X as expressed in the
following lemma.

Lemma 10. Given α, β ∈ (0, 1), consider compact sets L̂ ⊆ L ⊂ Rd and compact sets X̂ ⊆ X ⊂ Rd \ Lβ,
such that dX̂

H(L, L̂) ≤ δ < 1 and dL
H(X̂, X) ≤ ε < 1, then (ÃL

X ,B L̂
X̂
) are (h8, h9)-interleaved on (0, 1), where

h8(r) = r+αr+ε
(1−r−rα−ε)(1−δ)

and h9(r) = r
(1−α)(1−δ−r) +

ε
1−α .

Proof. The proof can be found in Section A.1

3.3.3. The weak feature size

Chazal and Leutier [19] introduced the weak feature size (wfs) as the least positive critical value of

a Riemannian distance function. We denote the weak feature size with respect to f̃ L
X(·) as wfsL(X).

In light of the critical point theory of distance functions, a bound on the weak feature size gives
a guaranteed interval with no critical points. This allows one to infer the homology from another
filtration (usually one that is discrete and built from data) as long as the second filtration is interleaved
in that critical point free interval.

Lemma 11 (Adapted from [19] Theorem 4.2, see also [20]). Let S and Ŝ be compact subsets of Rd. If
dH(S, Ŝ) > ε and wfs(S) > 4ε, then for all sufficiently small η > 0,

H∗(AS(η)) ∼= im H∗(AŜ(ε) ↪→ AŜ(3ε)).

The key idea in that proof is that the Hausdorff bound gives an interleaving while the weak
feature size bound gives the interval without critical points. The technical condition regarding η is
present to account for strange compact sets that may be homologically different from their arbitrarily
small offsets. It is reasonable to assume that for some sufficiently small η, that H∗(AS(η)) ∼= H∗(S)
and thus one could “compute” the homology of S using only the sample Ŝ.

Most previous uses of the weak feature size have been applied in Euclidean spaces, but the critical
point theory of distance functions can be applied more broadly to other smooth Riemannian manifolds.
This is why we have introduced it as wfsL (with the superscript) to indicate the underlying metric.

3.3.4. Homology Inference

We have now introduced all the necessary pieces to prove our main homology inference result.

Theorem 3. Given α, β ∈ (0, 1), consider compact sets L̂ ⊆ L ⊂ Rd and compact sets X̂ ⊆ X ⊂ Rd \ Lβ,
such that dX̂

H(L, L̂) ≤ δ < 1 and dL
H(X̂, X) ≤ ε < 1. Define the real-valued functions Ψ and Φ as

Ψ(r) :=
r + αr + ε

(1− r− αr− ε)(1− δ)

and
Φ(r) :=

r
(1− α)(1− δ− r)

+
ε

1− α
.

Given any η > 0, such that ΦΨΦΨ(η) < 1, if wfsL(X) > ΦΨΦΨ(η), then

H∗(ÃL
X(η))

∼= im (H∗(BL̂
X̂(Ψ(η))) ↪→ BL̂

X̂(ΨΦΨ(η))).
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Proof. Given η > 0 such that ΦΨΦΨ(η) < 1, we have the following sequence of inclusions as a result
of Lemma 10.

ÃL
X(η)

� � a // BL̂
X̂
(Ψ(η)) � � b // ÃL

X(ΦΨ(η)) � � c // . . .

. . . c // BL̂
X̂
(ΨΦΨ(η)) � � d // ÃL

X(ΦΨΦΨ(η)).

(3)

As we assume that wfsL(X) > ΦΨΦΨ(η), by the definition of weak feature size, Lemma 9 implies
that the inclusions b ◦ a and d ◦ c are homotopy equivalences. We remind the reader that if two spaces
are homotopy equivalent, all the induced homology maps between the spaces are isomorphisms. By
applying homology to each space and inclusion in the previous sequence, we have the following
sequence of homology groups, where b∗ ◦ a∗ and d∗ ◦ c∗ are isomorphisms.

H∗(ÃL
X(η))

a∗ // H∗(BL̂
X̂
(Ψ(η)))

b∗ // H∗(ÃL
X(ΦΨ(η)))

c∗ //

H∗(BL̂
X̂
(ΨΦΨ(η)))

d∗ // H∗(ÃL
X(ΦΨΦΨ(η))).

(4)

The aforementioned isomorphisms b∗ ◦ a∗ and d∗ ◦ c∗ factor through H∗(BL̂
X̂
(Ψ(η))) and

H∗(BL̂
X̂
(ΨΦΨ(η))) respectively, proving that b∗ is surjective and c∗ is injective. We then have that

H∗(ÃL
X(η))

∼= H∗(ÃL
X(ΦΨ(η))) ∼= im b∗ ∼= im (c∗ ◦ b∗).

3.3.5. Computing the Homology

The last step is to relate the smoothed offsets to something that can be computed. It will generally
be the case that the approximation X̂ of X is not just compact but also finite. Then, for any scale α ≥ 0,
we have BL̂

X̂
(α) is the union of a finite set of Euclidean balls.

The Nerve Theorem provides a natural way to compute the homology of a union of Euclidean
balls. The nerve of a collection U of sets is the sets of all subsets of U that have a nonempty intersection.
It has the structure of a simplicial complex, whose homology can be directly computed by standard
matrix reduction algorithms. When all nonempty intersections are contractible, the cover is said to be
good. A cover by Euclidean balls (or any convex shape) is always good. For good covers, the Nerve
Theorem, a standard result in algebraic topology [21] implies that

H∗(Nrv({ball(x, α f L̂(x))}x∈X̂))
∼= H∗(BL̂

X̂(α)).

This is the most basic way to compute the homology of union of balls and is used throughout
topological data analysis.

In our case, we are not just computing the homology of the union, but also the homology of
the inclusion map. This computation will require a slightly stronger result. The Persistent Nerve
Lemma [20], applies to Diagram 4 when combined with the above isomorphisms yields the following.

H∗(ÃL
X(η))

∼= im H∗(Nrv({ball(x, Ψ(η) f L̂(x))}x∈X̂)) ↪→ Nrv({ball(x, ΨΦΨ(η) f L̂(x))}x∈X̂)).

This last statement turns the isomorphism into an algorithm, because standard algorithms [22]
can compute the homology of the inclusion of the nerves.

4. Conclusion

We have presented an alternative metric in Euclidean space that connects adaptive sampling and
uniform sampling. We show how to apply classical results from the critical point theory of distance
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functions to infer topological properties of the underlying space from such samples. This provides a
connection between methods in surface reconstruction (based on adaptive sampling) and homology
inference (based on uniform sampling).

We show in Theorem 1 that there is a precise relationship between samples that are uniformly
taken with respect to dL at some scale, to those same samples being adaptive in the Euclidean metric.
In Theorem 2, we show that we can interleave the sublevel sets of our distance function under this
alternative metric with the metric balls resulting from our approximation of the metric, assuming that
both X̂ and L̂ are uniformly well-sampled with respect to the Hausdorff distance of dL and dX̂ . Finally,
we showed how to fully extend the critical point theory of distance functions and the weak feature
size to give theoretical guarantees on homology inference from finite samples of X and L using the
induced metric (Theorem 3).

The main limitation of adaptive metrics is that they require two sets as input, one to define the set
and one to define the metric. In many instances, this is not available. However, we expect that the
approach could find wider use in problems with labelled data. For example, data with binary labels
may be viewed as the two sets X and L. Then, each set defines a metric on the other, where the metric
is scaled according to how close it is to the other set. This is the subject of ongoing and future work.
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Appendix A. Details on Metric Smoothing

This section includes the full construction and relevant lemmas about the smoothed version of
the induced metric.

For a compact set L ⊂ Rd and β ≥ 0 denote by Lβ := {x ∈ Rd | miny∈L ‖x− y‖ ≤ β} the offsets
of L with respect to the Euclidean metric. The following lemmas gives upper and lower bounds on the
value of a smoothing of the distance-to-set function fL, f̃L, which is defined on an arbitrarily smaller
subset of Euclidean space.

Lemma A1. Consider a compact set L ⊂ Rd. Given α ∈ (0, 1), for all β ∈ (0, 1), there exists smooth function
f̃L : Rd \ Lβ → R such that for all x ∈ Rd \ Lβ, (1− α) fL(x) < f̃L(x) < (1 + α) fL(x).

Proof. By a standard result from [18], for all ε > 0, there exists a smoothing f̃L : Rd \ Lβ → R of
the distance function fL such that ‖ fL − f̃L‖∞ < ε. Choose ε = βα, for the given α ∈ (0, 1). By the
approximation property of f̃L, for all x ∈ Rd \ Lβ we have that fL(x)− ε < f̃L(x) < fL(x) + ε. Also
note that for all x ∈ Rd \ Lβ, fL(x) > β = ε

α and thus α fL(x) > ε. Combining the aforementioned we
have that fL(x)(1− α) < fL(x)− ε and fL(x) + ε < fL(x)(1 + α).

Consider f̃L as defined in Lemma A1. Using this we can define a smooth adaptive distance

function f̃ L
X and provide upper and lower bounds on its value with respect to the original adaptive

distance function f L
X . For x, y ∈ Rd \ Lβ, we define

d̃L(x, y) := inf
γ∈Path(x,y)

∫
γ

dz
f̃L(z)

and f̃ L
X(y) := d̃L(y, X).
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Lemma A2. Given α, β ∈ (0, 1) and a smooth function f̃L defined on Rd \ Lβ approximating fL, consider a
compact set X ⊂ Rd \ Lβ. The Riemannian distance function f̃ L

X(·) := d̃L(·, X) satisfies the following property
for all y ∈ Rd \ Lβ,

1
1 + α

f L
X(y) < f̃ L

X(y) <
1

1− α
f L
X(y).

Proof. Given two points x, y ∈ Rd \ Lβ, and any ε > 0, consider γ, γ′ ∈ Path(x, y) such that dL(x, y) ≤∫
γ

dz
fL(z)
≤ dL(x, y) + ε and d̃L(x, y) ≤

∫
γ′

dz
f̃L(z)
≤ d̃L(x, y) + ε. We then have the following inequalities

resulting from inverting the inequalities in Lemma A1.

d̃L(x, y) ≤
∫

γ

dz
f̃L(z)

<
1

1− α

∫
γ

dz
fL(z)

≤ 1
1− α

dL(x, y) +
ε

1− α
,

and
1

1 + α
dL(x, y) ≤ 1

1 + α

∫
γ′

dz
fL(z)

<
∫

γ′

dz
f̃L(z)

≤ d̃L(x, y) + ε.

. Since these equalities hold for all ε > 0, then we can conclude that for all pairs x, y ∈ Rd \ Lβ,
1

1+α dL(x, y) < d̃L(x, y) < 1
1−α dL(x, y).

Now consider y ∈ Rd \ Lβ. Define x′ := argminx∈X dL(y, x) and x′′ = argminx∈X d̃L(y, x). We
remind the reader that these points’ existences are guaranteed by the Extreme Value Theorem. By
examining these variables with respect to the previous inequality we know that

1
1 + α

dL(y, x′) ≤ 1
1 + α

dL(y, x′′) < d̃L(y, x′′) ≤ d̃L(y, x′) <
1

1− α
dL(y, x′).

By applying the definitions of both adaptive distance functions to the previous expression we obtain
the desired inequality,

1
1 + α

f L
X(y) < f̃ L

X(y) <
1

1− α
f L
X(y).

Define the Riemannian adaptive offsets of X as ÃL
X(α) := {x ∈ Rd | f̃ L

X(x) ≤ α}, and denote
the corresponding filtration by ÃL

X . The following result reestablishes Lemma A2 in the language of
filtrations and establishes an interleaving of the Riemannian adaptive offsets with the original adaptive
offsets.

Corollary A1. Let L ⊂ Rd be a compact set. Given α, β ∈ (0, 1), for compact X ⊂ Rd \ Lβ, there exists a
Riemannian distance function f̃ L

X : Rd → R, such that (ÃL
X,AL

X) are (h6, h7)-interleaved on (0, ∞), where
h6(r) = (1 + α)r and h7(r) = r

1−α .

Proof. By Lemma A2, there exists a Riemannian distance function f̃ L
X : Rd → R, such that for all

y ∈ Rd \ Lβ,
1

1 + α
f L
X(y) < f̃ L

X(y) <
1

1− α
f L
X(y),

so for r ∈ (0, ∞) and y ∈ ÃL
X(r), f̃ L

X(y) ≤ r, and thus f L
X(y) ≤ (1 + α)r, which implies that y ∈

AL
X((1 + α)r), so ÃL

X(r) ⊆ AL
X((1 + α)r).

On the other hand, for r ∈ (0, ∞) and y ∈ AL
X(r), f L

X(y) ≤ r, and thus f̃ L
X(r) ≤

r
1−α , so AL

X(r) ⊆
ÃL

X(
r

1−α ).

Combining the previous corollary with Theorem 2 in Section 3.2.4, we obtain an interleaving
between the smoothed adaptive offsets and the approximate offsets. This will then allow us to apply
Lemma 9 and standard topological data analysis techniques to this interleaving to give a method
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of homology inference for arbitrary small offsets of X as we have a Riemannian distance function
generating the smooth adaptive offsets filtration.

Appendix A.1. Proof of Lemma 10

Proof. The hypotheses of the statement satisfy the hypotheses of both Theorem 2 and Corollary A1 so
one knows that (AL

X,B L̂
X̂
) are (h4, h5)-interleaved on (0, 1), where h4(r) = r+ε

(1−r−ε)(1−δ)
, and h5(r) =

r
1−δ−r + ε Also, (ÃL

X ,AL
X) are (h6, h7)-interleaved on (0, ∞), where h6(r) = (1 + α)r and h7(r) = r

1−α .
By applying Lemma 4 and composing the necessary functions, we achieve the stated interleavings.
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