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Abstract

From the work of Bauer and Lesnick, it is known that there is no functor from the category
of pointwise finite-dimensional persistence modules to the category of barcodes and overlap
matchings. In this work, we introduce sub-barcodes and show that there is a functor from the
category of factorizations of persistence module homomorphisms to a poset of barcodes ordered
by the sub-barcode relation. Sub-barcodes and factorizations provide a looser alternative to
bottleneck matchings and interleavings that can give strong guarantees in a number of settings
that arise naturally in topological data analysis. The main use of sub-barcodes is to make
strong claims about an unknown barcode in the absence of an interleaving. For example, given
only upper and lower bounds g ≥ f ≥ ` of an unknown real-valued function f , a sub-barcode
associated with f can be constructed from ` and g alone. We propose a theory of sub-barcodes
and observe that the subobjects in the functor category Fun(Intop,Mch) naturally correspond
to sub-barcodes.

1 Introduction

A persistence module is an algebraic object with a complete invariant known as a barcode that can
be efficiently extracted from data. The algebraic stability theorem [1] states that an interleaving
between persistence modules implies that the corresponding barcodes are close in bottleneck dis-
tance, providing a computable basis for comparison. However, when there is no interleaving, or only
a very loose one, the existing theory provides only weak guarantees. In this paper, we address the
following question:

Given a barcode, what can be said about the corresponding persistence module without
an interleaving?

Due to the isometry established by the algebraic stability theorem and its converse [2], there
is no answer to this question in terms of the bottleneck distance. However, there are still strong
guarantees to be derived from half an interleaving, where a “half interleaving” is a factorization of
persistence module homomorphisms. This perspective leads to a natural subobject relation that can
replace the bottleneck distance in some theoretical guarantees. The resulting theory of sub-barcodes
addresses a fundamental question in the theory of persistence:

How can we reliably extract part of a barcode if we only have part of the data?

A barcode B is represented by a collection of intervals with multiplicity, and a sub-barcodeA of B
is formed by either discarding or taking a subinterval of each interval of B (Figure 1; see Sections 2.3
and 3 for formal definitions). Using the induced matchings of Bauer and Lesnick [3, 4], we show how
factorizations of persistence module homomorphisms induce sub-barcode matchings. As a result, we
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Figure 1: A sub-barcode matching.

can extract part of the barcode of a persistence module U using only a homomorphism G : V!W
that factors through it. In particular, Theorem 3.3 implies that the barcode BG of the image of G
is a sub-barcode of BU if Diagram (1) commutes.

V W

U

G

ϕ1 ϕ2

(1)

There are some natural cases in topological data analysis where this situation arises. We discuss
two such cases in Section 4. Perhaps the simplest is the case when one has only upper and lower
bounds on an unknown function f . Theorem 3.3 implies that the barcode associated with the
inclusion of the upper bound into the lower bound is a sub-barcode of the barcode assocoiated with
f . Figure 2 depicts this situation.

Figure 2: On the left, two functions are depicted, one is an upper bound and the other is a lower
bound on an unknown function f . There is a corresponding barcode associated with the pair that
matches minima in the upper bound to maxima in the lower bound. On the right is a candidate
function f that lies between the upper and lower bounds and its barcode Bf . The barcode of the
inclusion of the upper and lower bounds is a sub-barcode of Bf .
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1.1 Related Work

Edelsbrunner et al. [5] first introduced an efficient algorithm for computing a persistence diagram
(barcode) from a sequence of finite simplicial complexes in R3. This sequence, known as a filtration,
can be easily computed from point-cloud data, and the resulting barcode captures the evolution
of topological invariants known as the betti numbers βk, each of which qualifies the k-dimensional
connectivity of the underlying space. Zomorodian and Carlsson [6] later extended the theory to the
persistent homology of simplicial complexes in Rd over any field.

Persistent homology has since seen a number of extensions and generalizations including ex-
tended persistence [7], Zigzag persistence [8], and persistent cohomology [9]. This is in addition to a
number of foundational results in topological data analysis [10, 11, 12, 13] supported by significant
improvements to the original persistence algorithm [14, 15, 16, 17, 18]. Most of these results, if not
all, rely in some way on the the stability theorem.

Cohen-Steiner et al. [19] first showed that the bottleneck distance dB between barcodes Bf ,Bg
of real-valued functions f, g : X ! R is 1-Lipschitz with respect to the `∞-norm on the functions:

(stability) dB

(
Bf ,Bg

)
≤ ‖f − g‖∞.

This result was quickly generalized by Chazal et al. [1] as the algebraic stability theorem which
states that a δ-interleaving of pointwise-finite dimensional (p.f.d.) persistence modules implies a
δ-bottleneck matching between barcodes, effectively generalizing the stability theorem from the
`∞-norm on functions to the interleaving distance dI on persistence modules V,W:

(algebraic stability) dB

(
BV,BW

)
≤ dI(V,W).

The converse algebraic stability theorem was then shown by Lesnick [2] to follow directly as a result
of the structure theorem for p.f.d. [20] persistence modules, establishing a correspondence between
the interleaving and bottleneck distances known as the isometry theorem:

(isometry) dB(BV,BW) = dI(V,W).

While persistence originated as a tool for topological data analysis (TDA), the categorification of
persistence opens the door to more general applications beyond topology. Moreover, the perspective
offered by categorification not only simplifies proofs and avoids redundancies, but also provides a
bird’s-eye-view from which gaps in the existing theory can be clearly identified. Bauer and Lesnick [3,
4] use this perspective to provide a novel constructive proof of the algebraic stability theorem. They
show that the epi and mono morphisms in the category vecR of p.f.d. R-persistence modules induce
partial injective functions between their barcodes in the category Mch of matchings [21, 3, 22]
(see Section 2.3). The algebraic stability theorem follows as a corollary of their induced matching
theorem, which states that homomorphisms with ε-trivial (co)kernels induce matchings with ε-
trivial (co)kernels (Theorem 6.1 [3], Theorem 1.4 [4]). In the follow-up [4], the authors restrict
themselves to the category Barc of barcodes and overlap matchings (see Section 2.3) and show that
this formulation is equivalent to the functor categoryMchR that appears in the work of Edelsbrunner
et al. [22] as towers of matchings.

Other categorical perspectives include the theses of Curry [23] and Lesnick [2], the formal cat-
egorification of persistence by Bubenik and Scott [24] and the follow-up work with de Silva [25],
categorified reeb graphs by de Silva et al. [26], generalized persistence diagrams by Patel [27], and
more recently a formal construction of homological algebra for persistence modules by Bubenik and
Milićević [28].
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The barcodes associated with the image of a persistence module homomorphism play a major
role in this paper. The first algorithm to compute such a barcode from a nested pair of filtrations
was due to Cohen-Steiner et al. [29]. The key idea has its antecedents in the work of Chazel and
Lieutier [30]. Image persistence has found fruitful use in scalar field analysis [12] and clustering in
manifolds [31]. More recently, Bauer and Schmahl developed an efficient algorithm for computing
image persistence [32].

1.2 Overview

We begin with a review of the relevant background in Section 2. In Section 3 we define sub-barcode
matchings and the sub-barcode relation. In Section 3.1, we show that there exists a functor from the
category of factorizations of persistence modules to a poset of barcodes ordered by the sub-barcode
relation. We then present the barcode functor in Section 3.2, and show that sub-barcode matchings
correspond to subobjects in the resulting functor category. In Section 4, we discuss some practical
applications of sub-barcodes to TDA.

2 Background

We begin with a review of the relevent categorical constructions to establish notation in Section 2.1
We direct the interested reader to Kashiwara and Schapira [33] and Mac Lane [34] for a full treat-
ment. After formally defining persistence modules and their barcodes in Section 2.2, we consider
barcodes more generally and review the induced matchings of Bauer and Lesnick [3, 4] in Section 2.3.

2.1 Categories

For any category C let 1 denote the identity and let ◦ denote composition. We write b, c ∈ C to
denote objects b, c ∈ Ob(C) and f : b ! c to denote arrows f ∈ HomC(b, c) in C, which may be
referred to as morphisms f ∈ Mor(C). The opposite category Cop associated with C has objects
Ob(Cop) = Ob(C) and arrows HomCop(c, b) = HomC(b, c) for all b, c ∈ C. Two objects b, c ∈ C
are related if there exists an arrow between them and connected if there exists a finite sequence of
objects b = x0, . . . , xn = c in C such that, for all i < n, xi and xi+1 are related. A category is small
if its objects form a set, thin if there is at most one arrow between any two objects, and connected
if every pair of objects is connected.

A partially ordered set (poset) (P,≤) is a small and thin category P with arrows denoted b ≤ c
in which b ≤ c and b ≥ c implies b = c for all b, c ∈ P. A poset is a totally ordered set if every pair
of objects are related. In the following, P will denote a partially ordered set, T will denote a totally
ordered set, and R will denote the poset of real numbers (R,≤).

Given a poset P, a subset S ⊆ P is convex if for all b, c ∈ S, b ≤ t ≤ c implies t ∈ S. A
non-empty convex subset I ⊆ P is an interval in P if it is connected as a full subcategory of P. Note
that every convex subset of a totally ordered set is an interval. Let IP denote the set of intervals in
P, and let IntP denote the poset (IP,⊆) of intervals in P ordered by inclusion.

The category Set has sets as objects and functions as arrows. The category Rel has sets A,B
as objects and binary relations R ⊆ A × B as arrows. Let π1R =

{
a ∈ A | (a, b) ∈ R

}
and

π2R =
{
b ∈ B | (a, b) ∈ R

}
denote the projections of R onto A and B, respectively. The composition

of relations R ⊆ A×B and S ⊆ B × C in Rel is defined

S ◦R =
{

(a, c) ∈ A× C | (a, b) ∈ R and (b, c) ∈ S for some b ∈ B
}
.
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The transpose or reverse RT ⊆ B ×A of a relation R ⊆ A×B is defined

RT :=
{

(b, a) ∈ B ×A | (a, b) ∈ R
}
.

Functor categories A functor F : B! C between categories B and C is given by an object map

F (−) : Ob(B)! Ob(C)

and arrow maps
F [−] : HomB(b, c)! HomC(F (b), F (c)),

for all b, c ∈ Ob(B) in which F [1b] = 1F (b) for all b ∈ B and F [g ◦ f ] = F [g]◦F [f ] for all composable
pairs f, g ∈ Mor(B).

Given parallel functors F,G : B ! C, a natural transformation η : F ⇒ G is given by a family
of components ηb : F (b)! G(b) for each b ∈ B such that Diagram (2) commutes for all f ∈ Mor(B).

b F (b) G(b)

c F (c) G(c)

f F [f ]

ηb

G[f ]

ηc

(2)

A functor category CB, which may be denoted Fun(B,C) for notational purposes, has functors
F : B! C as objects and natural transformations F ⇒ G as arrows.

2.2 Persistence Modules

Working over a fixed field k, Vec is the category of vector spaces and linear maps and vec is
the full subcategory of Vec restricted to finite-dimensional vector spaces. Given a poset P, the
functor category VecP of P-persistence modules has functors V : P ! Vec as objects and natural
transformations F : V ⇒ W as arrows referred to as homomorphisms. A persistence module V is
pointwise finite-dimensional (p.f.d.) if V(t) is finite-dimensional for all t ∈ P. The full subcategory
of VecP restricted to p.f.d. persistence modules is vecP.

Given an interval I ∈ IP, an interval module kI is a P-persistence module defined

kI : P −! Vec

(objects) t 7−! k if t ∈ I; 0 otherwise,
(arrows) (s ≤ t) 7−! 1k if s, t ∈ I; 0 otherwise.

The following definition subsumes the formulation of barcodes as multisets found in prior work.

Definition 2.1 (Barcode). Given a poset P, a P-indexed barcode is a function

B : B ! IP,

where the set B is the set of bars β that represent intervals B(β) ∈ IP.

Given a barcode B, we can construct a persistence module as a direct sum of interval modules⊕
β∈B

kB(β).
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An interval decomposition of a persistence module V ∈ VecP is given by a barcode BV : BV ! IP
such that

V '
⊕
β∈BV

kBV(β).

If it exists, then the interval decomposition (and therefore the barcode) of a persistence module
indexed by a totally ordered set T is unique up to isomorphism. In particular, every p.f.d. T-
persistence module V ∈ vecT has an interval decomposition [20], and therefore a barcode BV. For
any homomorphism F : U! V in vecT the image of F is a persistence module with a barcode that
will be denoted BF := BimF . In the following, we will refrain from restricting ourselves to a total
order unless considering the barcode BV ∈ BarT of a p.f.d. persistence module V ∈ vecT.

B

B(β1)
B(β2)

B(β3)
B(β4)
B(β5)

Figure 3: A P-indexed barcode B : B ! IP with B = {β1, . . . , β5}.

2.3 Matchings and Induced Matchings

Given sets A and B, a matching M : A [! B is a relation M ⊆ A×B in which

(a) for all a ∈ A there is at most one b ∈ B with (a, b) ∈M , and

(b) for all b ∈ B there is at most one a ∈ A with (a, b) ∈M .

Let Mch denote the subcategory of Rel restricted to matchings. The mono (resp. epi) morphisms in
Mch are matchings M with π1M = A (resp. π2M = B). Matchings correspond to partial injective
functions, and the mono (resp. epi) morphisms in Mch will therefore be referred to as injections
(resp. coinjections).

A matching M of P-indexed barcodes A and B is a matching of bars (α, β) ∈M that represent
intervals A(α),B(β) ∈ IP. Formally, a barcode matching is a matching M : A [! B in Mch such
that A(α)∩B(β) 6= ∅ for all (α, β) ∈M . Let BarP denote the category with P-indexed barcodes as
objects and arrows M : A [! B given by barcode matchings. Composition of matchings M : A [! B
and N : B [! C in BarP is defined

N ◦M =
{

(α, γ) ∈ N ◦M | A(α) ∩ C(γ) 6= ∅
}
.

The theory of induced matchings [3, 4] provides a canonical matching BV [! BW between the
barcodes of persistence modules that is induced by a homomorphism V!W. In particular, given a
totally ordered set T, the epi and mono morphisms in vecT induce canonical (co)injections between
the corresponding barcodes in BarT (Theorem 2.4). In Section 3.1, we use these matchings to define
induced sub-barcode matchings.

6



Given a poset P and intervals I, J ∈ IP, we say that J bounds I below if there exists some a ∈ J
with a ≤ t for all t ∈ I, and I bounds J above if there exists d ∈ I with t ≤ d for all t ∈ J .

(J bounds I below) (I bounds J above)

. . . I

. . . J . . .J

. . .I

I and J coincide below if J bounds I below and I bounds J below. I and J coincide above if I
bounds J above and J bounds I above.

(I and J coincide below) (I and J coincide above)

. . . I

. . . J . . .J

. . .I

Definition 2.2 (Overlap Matching). I overlaps J above if I ∩ J 6= ∅, J bounds I below, and I
bounds J above.

(I overlaps J above)

I

J

A matching M : A [! B in BarP is an overlap matching if A(α) overlaps B(β) above for all
(α, β) ∈M (Figure 4).

Let BarcP denote the subcategory of BarP restricted to overlap matchings. The following lemma
implies that the composition of overlap matchings in BarP is an overlap matching.

Lemma 2.3. If M : A [! B and N : B [! C are overlap matchings and (α, γ) ∈ N ◦M , then there
exists some β ∈ B with (α, β) ∈M and (β, γ) ∈ N such that

A(α) ∩ C(γ) ⊆ B(β).

Proof. Assume t ∈ A(α) ∩ C(γ). Because M is an overlap matching, B(β) bounds A(α) below, so
there exists some b ∈ B(β) such that b ≤ t. Because N is an overlap matching, B(β) bounds C(γ)
above, so there exists some c ∈ B(β) such that t ≤ c. Because B(β) is an interval it is convex, so
b ≤ t ≤ c implies t ∈ B(β) for all t ∈ A(α) ∩ C(γ).

The category Barc of barcodes and overlap matchings was first introduced by Bauer and
Lesnick [4]. The following theorem is the critical result from their work that we will state in
the larger category BarT.

Theorem 2.4 (Theorem 4.2 [3], Theorem 1.1 [4]). Let T be a totally ordered set. The mono and
epi morphisms of vecT induce canonical matchings in BarT that define functors

(a) J : Mono(vecT) ! Mono(BarT) taking monomorphisms m : V ↪! W to injective overlap
machings J [m] : BV [↪! BW in which, for all (α, β) ∈ J [m],

(i) BV(α) and BW(β) coincide above and

(ii) BV(α) ⊆ BW(β);
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A

B

Figure 4: An overlap matching in BarcP.

(b) Q : Epi(vecT)! Epi(BarT) taking epimorphisms e : V�W to coinjective overlap matchings
Q [e] : BV [� BW in which, for all (α, β) ∈ Q [e],

(i) BV(α) and BW(β) coincide below and
(ii) BV(α) ⊇ BW(β).

Notation 2.1. For any F : V!W in vecT with an epi-mono factorization

V
qF−−� imF

jF
↪−!W,

let QF = Q [qF ] and JF = J [jF ].
Remark 2.2. The matchings induced by mono and epi morphisms are given by canonical injec-
tions [3] that rely only on the existence of a mono or epi morphism between two persistence modules.
That is, given parallel mono (resp. epi) morphisms F,G : V ⇒ W in vecT, J [F ] = J [G] (resp.
Q [F ] = Q [G]).

I

J

Figure 5: A matching given by J is an overlap matching of intervals I ⊆ J that coincide above.

In the next section, we introduce sub-barcode matchings M : A [! B in which A(α) ⊆ B(β)
for all (α, β) ∈ M . Although overlap matchings in BarT given by J (Figure 5) and the reverse
of overlap matchings given by Q are sub-barcode matchings, not all sub-barcode matchings are
overlap matchings (Figure 6). This is the main motivation for working in the larger category BarT
containing both overlap and sub-barcode matchings.

I

J

Figure 6: A sub-barcode matching is an injective matching of intervals I ⊆ J .

3 Sub-barcodes and Barcode Functors

Definition 3.1 (Sub-barcode Matchings and the Sub-barcode Relation). Given A,B ∈ BarP, a
matching M : A [! B in BarP is a sub-barcode matching if A(α) ⊆ B(β) for all (α, β) ∈M . If there
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exists an injective sub-barcode matching from A to B, we say that A is a sub-barcode of B, and
denote A v B.

Let SubBarP denote the subcategory of BarP restricted to sub-barcode matchings. SBarP is the
poset of isomorphism classes of barcodes in SubBarP ordered by the sub-barcode relation.

A

B

In Section 3.1 we show how the induced matchings of Bauer and Lesnick [4] can be used to
define a functor from the category Fac(vecT) of factorizations of persistence modules to the poset
SBarT. We then introduce the barcode functor barB : IntopP ! Mch associated with a barcode B,
and show that sub-barcodes correspond to subobjects in the functor category Fun(IntopP ,Mch) in
Section 3.2.

3.1 Factorizations and Induced Sub-barcode Matchings

Though not explicitly named, factorizations are used throughout the existing theory of persistence.
For example, letting V(ε) denote a persistence module V ∈ VecR shifted by a constant ε ∈ R, a
2ε-interleaving is traditionally given by a pair of commuting diagrams

V(−ε) V(ε)

U

Vε

Φ(−ε) Ψ

(3)
V

U(−ε) U(ε)

Φ

Uε

Ψ(−ε) (4)

depicting factorizations of homomorphisms Vε : V(−ε)! V(ε) and Uε : U(−ε)! U(ε) by a pair(
Φ : V! U(ε), Ψ : U! V(ε)

)
.

In this section, we will show that the commutativity of Diagrams (3) and (4) imply sub-barcode
relations BVε v BU and BV w BUε.

Definition 3.2 (Category of Factorizations (Exercise IX.6.3 [34], Definition 2.1.15 [33])). Given a
category C, the category of factorizations is a category Fac(C) whose objects are the morphisms of
C and arrows ϕ : g 
 f are the factorizations in C, which are commutative diagrams:

a b

where ϕ := (ϕ1, ϕ2) : g 
 f.

d c

g

ϕ1

f

ϕ2

(5)
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As an example, the category Fac(P) of factorizations of a poset P is a category with ordered
pairs (b ≤ c) as objects that can be interpreted as intervals. Moreover, Fac(P) is a poset with
factorizations J 
 I corresponding to inclusions of intervals J ⊇ I.

b c

a d

I

J

The objects in the category Fac(vecT) are homomorphisms F : U ! V, G : T ! W and the
arrows are factorizations ϕ : G
 F given by commuting diagrams

U V

T W.

F

ϕ2

G

ϕ1 (6)

The existence of a factorization G 
 F implies a sub-barcode relation BG v BF . This fact is
stated formally in Theorem 3.3. The proof will follow directly from the construction of induced
sub-barcode matchings (Definition 3.4, Lemma 3.5).

Theorem 3.3. Given a totally ordered set T, the map F 7! BF defines a functor

Fac(vecT)! SBarT.

To simplify notation, we will provide shorthand for the various restrictions involved in the epi-
mono factorizations associated with a factorization (Diagram 7).
Notation 3.1. Given a factorization ϕ : G 
 F in Fac(vecT), let Fϕ : imϕ1 ! imF and ϕF :
imF ! imϕ2 denote the restrictions

Fϕ := F |imϕ1
and ϕF := ϕ2|imF .

Because ϕ is a factorization of G through F we have that G = ϕ2 ◦ F ◦ ϕ1, thus

imG = im (ϕ2 ◦ F ◦ ϕ1) = imϕ2|imF◦ϕ1
= imϕ2|imFϕ

.

Let ϕ∗ : imFϕ ! imϕF denote the restriction

ϕ∗ := ϕ2|imFϕ

so that imϕ∗ = imG.
The following diagram of epi-mono factorizations is given by the commutativity of Diagram (6):

U V

imF

imϕ1 imFϕ imϕF imϕ2

imG

T W

F

ϕ2

ϕF
qϕF

Fϕ

ϕ∗

qϕ∗

jFϕ

jϕ∗

ϕ1

G

(7)
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Definition 3.4 (Induced Sub-barcode Matchings). Given a factorization ϕ : G
 F in Fac(vecT),
the induced sub-barcode matchingMϕ : BG [↪! BF of ϕ is an injective matching in BarT defined as
the composition

Mϕ := JFϕ ◦ QT
ϕ∗ ;

the induced super-barcode matching Eϕ : BF � BG of ϕ is a coinjective matching in BarT defined
as the composition

Eϕ := J T
ϕ∗ ◦ QϕF .

BF BF

BFϕ BϕF

BG. BG.

[
QϕF

[Eϕ

[
JFϕ

[
J T
ϕ∗

[
QT
ϕ∗

[ Mϕ (8)

Note that, in general, Mϕ 6= ETϕ . That is, the theory of induced matchings gives two different
canonical matchings associated with a factorization. This is related to the fact that the composition
of matchings given by the functors J and Q is not functorial.

Theorem 3.3 is a direct consequence of the following lemma.

Lemma 3.5. Mϕ and ETϕ are injective sub-barcode matchings.

Proof. BecauseMϕ is a composition of injective matchings it is injective as well. So it suffices to
show that BG(α) ⊆ BF (β) for all matched pairs (α, β) ∈Mϕ. If (α, β) ∈Mϕ then, by the definition
of compositon in BarT, there exists a bar x of BFϕ and pairs (x, α) ∈ Qϕ∗ and (x, β) ∈ JFϕ . By
Theorem 2.4(b)(ii), BG(α) ⊆ BFϕ(x), and by Theorem 2.4(a)(ii) BFϕ(x) ⊆ BF (β). So

BG(α) ⊆ BFϕ(x) ⊆ BF (β),

and we conclude thatMϕ is a sub-barcode matching.
The proof that ETϕ is a sub-barcode matching follows in the same way.

3.2 Barcode Functors

In previous work [4], it is shown that the category Barc of R-indexed barcodes and overlap matchings
is isomorphic to the category MchR of functors R ! Mch [22]. Similar to persistence modules,
objects b ∈ MchR have arrow maps b [s ≤ t] that serve to “glue” bars together by a parameter
t ∈ R (Figure 7). The authors then show that, if bV : R ! Mch corresponds to the barcode of a
persistence module V, then the number of intervals in im b [s ≤ t] is equal to the rank of V [s ≤ t].
Because Barc ' MchR, the natural transformations between two such barcodes corresponds to an
overlap matching between them.

In this section we propose an alternative definition of P-indexed barcodes as contravariant func-
tors from the poset IntP of intervals ordered by inclusion to Mch. That is, we consider a larger
functor category of intervals in a poset rather than the poset itself. This generalizes MchP to a
category in which natural transformations not only capture overlap matchings, but also sub-barcode
matchings. In particular, Theorem 3.7 states that A v B is a sub-barcode matching if and only if
there exists a monomorphism in the category Fun(IntopP ,Mch) of barcode functors defined formally
as follows.
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B

ts

B(β1)
B(β2)

B(β3)
B(β4)

Figure 7: A functor bB ∈MchP in which bB(s) = {β3, β4} and bB(t) = {β1, β2}.

B

I′I

B(β2)
B(β3)

Figure 8: A barcode functor barB and intervals I and I ′ where barB(I) = {β3} and barB(I ′) = {β2}.

Given a barcode B ∈ BarP and an interval I ∈ IntP let BI ⊆ B denote the set of bars of B
associated with intervals containing I:

BI =
{
β ∈ B | I ⊆ B(β)

}
,

and let BI := B|BI : BI ! IP denote the restriction of B to I. If I ⊆ J and β ∈ B(J) then β ∈ B(I).
It follows that BI ⊇ BJ for all I ⊆ J in IntP.

Definition 3.6 (Barcode Functor). Given B ∈ BarP, the associated barcode functor is a contravari-
ant functor in the category BarFunP := Fun(IntopP ,Mch) defined

barB : IntopP −!Mch

(objects) I 7−! BI
(arrows) (I ⊆ J) 7−! (BI ⊇ BJ) .

Given a matching M : A [! B in BarP, let MI ⊆ M denote the restriction of M to bars
representing intervals containing I:

MI = M ∩ (AI × BI).

Because MI ⊆M and M is a matching, MI : barA(I) [! barB(I) is a matching as well. Let mchM :
barA ⇒ barB denote the natural transformation with components MI given by the commutativity
of Diagram (9) for all I ⊆ J .

I barA(I) barB(I)

J barA(J) barB(J)

⊆

[MI

[MJ

⊆ ⊆ (9)
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Theorem 3.7. Given a poset P and barcodes A,B ∈ BarP, A v B if and only if there exists a
monomorphism M : barA ↪! barB in BarFunP.

Proof. Because the arrow maps of barcode functors are inclusions,M is a monomorphism in BarFunP
if and only if its components MI are injective matchings for all I ∈ IntP.

( =⇒ ) Suppose A v B. Then there exists an injective sub-barcode matching M : A [↪! B in
SubBarP with an associated natural transformation mchM : barA ! barB in BarFunP. To
show mchM is a monomorphism, it suffices to show that the components MI : barA(I) [!
barB(I) are injective matchings.

Let I ∈ IntP be any interval. Let α be any bar in barA(I). Because M is a sub-barcode
matching, there exists a pair (α, β) ∈ M with A(α) ⊆ B(β). So I ⊆ A(α) ⊆ B(β) implies
β ∈ barB(I), thus (α, β) ∈MI . Because we have such a β for any α ∈ barA(I), MI is injective
as desired.

(⇐= ) Assume there exists a monomorphism M : barA ↪! barB. Because A =
⋃
I∈IntP barA(I)

and B =
⋃
I∈IntP barB(I), and because MI is injective for all I ∈ IntP, M =

⋃
I∈IntP MI is

an injective matching M : A [! B in Mch. So it suffices to show that M is a sub-barcode
matching.

Let α ∈ A. Because α ∈ barA(A(α)) and MA(α) : barA(A(α)) [↪! barB(A(α)) is injective, there
exists some β ∈ barB(A(α)) such that (α, β) ∈ MA(α), so A(α) ⊆ B(β). Because there exists
such a pair (α, β) ∈M for any α ∈ A, we may conclude that M is a sub-barcode matching as
desired.

Theorem 3.7 implies that a barcode A is a sub-barcode of B if and only if barA is a subobject
of barB in BarFunP. We note that not every object in this category should be considered a barcode
functor, and hypothesize that the relevant subcategory of barcode functors is given by restricting
to functors IntopP ! BarP with projective limits in BarP.

Importantly, an isomorphism A ' B in BarP only requires an isomorphism A ' B in Mch, and
therefore does not correspond to an equivalence of barcodes. On the other hand, isomorphisms of
barcodes in BarcP and SubBarP correspond to equivalences of barcodes, requiring both an isomor-
phism s : A ∼! B and A = B ◦ s. In fact, there are four obvious subcategories of BarP with this
property that correspond to the four quadrants of the persistence plane (Figure 9). We will conclude
this section by showing that there exist functors from these four subcategories to BarFunP.

Theorem 3.8. There exist functors SubBarP ! BarFunP and BarcP ! BarFunP that take barcodes
B to barcode functors barB and matchings M to natural transformations mchM .

Proof. First we show that these maps take identity morphisms of BarP to identity morphisms in
BarFunP. For all I ∈ IntP and B ∈ BarP, we have

(mch1B)I = (1B)I = 1B ∩ (BI × BI) = 1BI = (1barB)I ,

so mch1B = 1barB .
We will now show that the composition of matchings in SubBarP and BarcP correspond to

compositions of natural transformations in BarFunP. Let M : A [! B and N : B [! C be matchings

13



SubBarP

(coincide above)

BarcP

(coincide above)

SubBaropP

(coincide below)

BarcopP

(coincide below)

Figure 9: The four subcategories of BarP corresponding to matchings made in each quadrant of the
persistence plane.

in BarP. We will show that mchN◦M = mchN ◦mchM by showing that (N ◦M)I = NI ◦MI for all
I ∈ IntP. Because

NI ◦MI = (N ∩ (BI × CI)) ◦ (M ∩ (AI × BI))
⊆ (N ◦M) ∩ (AI × CI)
= (N ◦M)I

it remains to show that (N ◦M)I ⊆ NI ◦MI .
Let (α, γ) ∈ (N ◦M)I . So there exists some β ∈ B such that (α, β) ∈ M and (β, γ) ∈ N . If

β ∈ barB(I) then (α, γ) ∈ NI ◦MI , so it suffices to show that β ∈ barB(I) when M and N are
sub-barcode or overlap matchings.

If M is a sub-barcode matching then (α, β) ∈ M implies A(α) ⊆ B(β). Because α ∈ barA(I),
I ⊆ A(α) ⊆ B(β), so β ∈ barB(I). If M and N are overlap matchings then A(α) ∩ C(γ) ⊆ B(β)
by Lemma 2.3. Because α ∈ barA(I) and γ ∈ barC(I), I ⊆ A(α) ∩ C(γ) ⊆ B(β), so β ∈ barB(I) as
desired.

It is a straightforward exercise to show that there exist functors SubBaropP ! BarFunP and
BarcopP ! BarFunP in the same way.

4 Sub-barcodes in TDA

The standard TDA pipeline spans several different categories, from functions to filtrations to per-
sistence modules to barcodes (Diagram (10)). Ideally, in each of these steps, the transition would
be functorial, making it clear how relationships between objects at one stage carry on to relation-
ships later in the pipeline. Generally, it is the last step which fails to be functorial, resulting in
the distinction between hard and soft stability [25]. However, the transition to barcodes is only
Lipschitz with respect to metrics on the categories; in the poset SBar we set aside these metric
considerations.

X P Top Vec Mch.
f F H (10)
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In this section, we present an application of sub-barcodes to a concrete problem in topological
data analysis. Given only an upper and lower bound g ≥ f ≥ ` of an unknown function f , the goal
is to learn as much as possible about the barcode associated with f . We will begin by providing a
clear framework for stating the problem. The result will then follow directly from the results of the
previous section.

Given a poset P and a topological space X regarded as a discrete category, the category PX of
functions X ! P forms a poset in which g ≥ f if g(t) ≥ f(t) for all t ∈ P. A filtration over P
is a functor F : P ! Top given by a topological space F (t) for each t ∈ P and a continuous map
F [s ≤ t] : F (s)! F (t) for all s ≤ t.

The most common way to construct a filtration F ∈ TopP is by taking sublevels of a function
f ∈ PX :

F : P −! Top

(objects) t 7−! {x ∈ X | f(x) ≤ t}
(arrows) (s ≤ t) 7−! (F (s) ⊆ F (t)).

Given sublevel filtrations F,G ∈ TopP of functions g ≥ f in PX , let G ↪! F denote the natural
inclusion map in TopP with components G(t) ⊆ F (t) for all t ∈ P. Note the contravariance
introduced; larger functions give smaller sublevel sets.

Definition 4.1 (Sublevel Functor).

Sub : PX −! TopP

(objects) f 7−! F

(arrows) (g ≥ f) 7−! (G ↪! F ).

Let H : Top! Vec denote the homology functor Hk for some dimension k. The homology of a
filtration F : P! Top gives a persistence module H(F ) : P! Vec in VecP. If the filtration is over
a totally ordered set T, then there is an associated barcode BH(F ).

Notation 4.1. Given g ≥ f ≥ ` : X ! T let BF = BH◦Sub(f) denote the barcode of H(F ) = H◦Sub(f),
and let BG↪!L = BimH◦Sub[g≥`] denote the barcode of H(G ↪! F ) = H ◦ Sub(g ≥ `).

The following corollary of Theorem 3.3 follows directly from the fact that g ≥ f ≥ ` implies

G ↪! F ↪! L,

and asserts that we can compute a sub-barcode of f knowing only an upper and lower bound.

Corollary 4.2. Let X be a topological space. Given functions g ≥ f ≥ ` : X ! T,

BG↪!L v BF .

Naturally, if the bounds are loose everywhere, then the sub-barcode may be empty. However,
when the bounds are sufficiently close in a neighborhood of significant topological features, one
expects to see the relevant features represented in the sub-barcode. Importantly, the barcode BG↪!L

can be computed using the image persistence algorithm of Cohen-Steiner et al. [29] (see also [32]),
providing a natural computational variant of Corollary 4.2.

We will conclude this section with two applications of Corollary 4.2.
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f

l

2εmax

Figure 10: An unknown function f and error bounds given for each v ∈ V with upper and lower
bounds g and ` given by the maximum error εmax.

Example 4.2 (Data on a simplicial complex with error bounds). LetK be a finite abstract simplicial
complex embedded in Rd with vertex set V , and let K ⊂ Rd denote the image of the embedding.
Let f : K ! R be a function that is linear on the simplices of K so that f is completely specified by
the restriction fV := f |V : V ! R of f to V . Our goal is to compute or approximate the persistent
homology of the sublevel filtration F of f .

Let Kf : R! Top denote the filtration on K with components

Kf (t) =
{
σ ∈ K | max

v∈σ
fV (v) ≤ t

}
.

If fV is known, then the barcode of F can be computed as the persistent homology ofKf . Otherwise,
we may expect a bound εv on the error for each v ∈ V with some guarantee. In this case, we propose
the following question:

Question 4.3. Given f ′ : V ! R and an error bound εv with |f ′(v)− f(v)| ≤ εv for each v ∈ V ,

what can we guarantee about BF ?

There are two very different answers to this question, one from the perspective of stability, and
the other from the perspective of sub-barcodes. We first give the standard approach via stability.

(Stability) Letting εmax = maxv∈V εv assume that f ′ has been extended to all of K so that

‖f − f ′‖∞ ≤ εmax.

It follows from the original stability theorem [19] that the bottleneck distance between BF ′
and BF will be within εmax; that is,

dB

(
BF ′ ,BF

)
≤ εmax.

However, this bound depends on the worst case error. If there is even a single vertex v for
which εv is large, then the guarantee will be quite weak.

(Sub-barcodes) We can use the error bounds εv associated with each vertex v ∈ V to construct
upper and lower bounds based not on the worst case error, but on the error at each vertex.
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Formally, let g ≥ ` : K ! R denote the piecewise linear functions with g ≥ f ≥ ` defined for
each v ∈ V as

g(v) := f ′(v) + εv

`(v) := f ′(v)− εv.

Using the image persistence algorithm [29] we can compute BG↪!L with the guarantee that

BG↪!L v BF

by Corollary 4.2.

Example 4.4 (Testing Topological Hypotheses). The fundamental pattern in science is the falsifi-
cation of hypotheses. It also happens to be a fundamental pattern in algebraic topology. Indeed, the
main use of topological invariants is to distinguish between spaces, where a difference of invariants
falsifies the hypothesis that the spaces are homeomorphic. Sub-barcodes provide a straightforward
and computationally feasible way to test topological hypotheses.

Barcodes are topological invariants for filtrations. That is, if two filtrations are naturally iso-
morphic (as functors), then they have the same barcode. Given a barcode A, the property of having
A as a sub-barcode is also a topological invariant. Corollary 4.2 in particular, and Theorem 3.3
more generally, provide a way to compute a sub-barcode using only an upper and a lower bound,
providing a testable hypothesis.

In data analysis, a natural isomorphism between filtrations often arises when the domain of
a function has undergone some unknown transformation, usually as a result of measurement. For
example, given an approximation of an established ground truth in a spaceX that has been measured
in a space Y , we might expect the measurement to be a homeomorphism h : X ! Y so that the
barcode of f is equal to that of f ◦h. That is, we can answer questions about f without considering
how it was measured (i.e., embedded) in Y . If different data sets were collected in different ways
then their barcodes can be compared without having to “align” the data sets. This is the value of
a topological invariant.

Formally, given u : X ! R along with upper and lower bounds g ≥ f ≥ ` : X ! R of an
unknown function f , we often encounter the following hypothesis.

Hypothesis 4.5. There exists a reparameterization r : X ! X such that f ◦ r = u.

If BG↪!L 6v BU , then no such reparameterization exists, and we have falsified the hypothesis.

5 Conclusion

While the stability of interleavings and bottleneck matchings provide a theoretical basis for the use
of approximated barcodes in conventional data analysis, there are questions that can be answered in
the absence of an interleaving. The goal of this work is not only to present sub-barcodes as a useful
tool for answering some of these questions, but also to direct the application of persistence as a tool
for answering questions about unknown data when conventional analysis cannot. The sub-barcode
perspective shifts focus from questions about topological proximity to questions about topological
obstructions.

There are natural computational questions that arise. For one interested in using sub-barcodes
in data analysis the most pressing question is how to test if one barcode is a sub-barcode of another.
In recent work Chubet showed that it is possible to find a maximum sub-barcode matching in the
O(n log n) time for barcodes with n bars. The algorithm has the same complexity if the intervals
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have arbitrary finite multiplicities. Moreover, for barcodes that do not satisfy a sub-barcode relation,
one can compute the minimum shift needed to obtain a sub-barcode. The resulting sub-barcode
distance is computable in expected O(n log2 n) time, and is at most the bottleneck distance. Note,
this means it is faster to test sub-barcodes than to compute bottleneck matchings.

In future work we will expand the theory of barcode functors and show how sub-barcodes and
factorizations appear implicitly in prior work, offering a new perspective on barcodes, the persistence
measure, and interleaving. In particular, we will apply the theory of generalized interleavings [25,
35] to δ-smoothed persistence modules Vδ : Vδ1 ! Vδ2 given by pre-composition with a natural
transformation of monotone functions:

S T Vec

δ1

δ2

δ
V  S Vec.

Vδ1

Vδ2

Vδ

The corresponding δ-smoothed barcode BδV is given by pre-composition with the barcode functor
barV of BV:

IntopS IntopT Mchδ barV  IntopQ Mch.
barV δ

As an immediate corollary to Theorem 3.3, the existence of a δ-factorization ϕ : Vδ 
 1U implies
BδV v BU when δ is given by a monotone function IntS ! IntT.
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