Approximating Nearest Neighbor Distances*

Michael B. Cohen!, Brittany Terese Fasy?, Gary L. Miller?, Amir Nayyeri?,
Donald R. Sheehy®, and Ameya Velingker?

! Massachusetts Institute of Technology
2 Montana State University
3 Carnegie Mellon University
4 Oregon State University
5 University of Connecticut

Abstract. Several researchers proposed using non-Euclidean metrics on
point sets in Euclidean space for clustering noisy data. Almost always, a
distance function is desired that recognizes the closeness of the points in
the same cluster, even if the Euclidean cluster diameter is large. There-
fore, it is preferred to assign smaller costs to the paths that stay close to
the input points.

In this paper, we consider a natural metric with this property, which we
call the nearest neighbor metric. Given a point set P and a path ~, this
metric is the integral of the distance to P along . We describe a (3 + ¢)-
approximation algorithm and a more intricate (1 + £)-approximation al-
gorithm to compute the nearest neighbor metric. Both approximation
algorithms work in near-linear time. The former uses shortest paths on
a sparse graph defined over the input points. The latter uses a sparse
sample of the ambient space, to find good approximate geodesic paths.

1 Introduction

Many problems lie at the interface of computational geometry, machine learning,
and data analysis, including, but not limited to: clustering, manifold learning,
geometric inference, and nonlinear dimensionality reduction. Although the input
to these problems is often a Euclidean point cloud, a different distance measure
may be more intrinsic to the data, other than the metric inherited from the
Euclidean space. In particular, we are interested in a distance that recognizes
the closeness of two points in the same cluster, even if their Euclidean distance
is large, and, conversely, recognizes a large distance between points in different
clusters, even if the Euclidean distance is small. For example, in Figure 1, the
distance between a and b must be larger than the distance between b and c.
There are at least two seemingly different approaches to define a non-Euclidean

metric on a finite set of points in R%. The first approach is to form a graph metric
on the point set. An example of a potential graph is the kth nearest neighbor
graph, where an edge between two points exists if and only if they are both in
the k nearest neighbor set of the other. In this graph, the edge weights may

* Partially supported by the NSF grant CCF-1065106.

e oe o
SUrshel .

LIS

Fig. 1: The intrinsic density-based distance should recognize two points within the
same cluster as cloesr than two points in different clusters, regardless of the
actual Euclidean distance.

be a constant or the Euclidean distances. In this paper, we consider the com-
plete graph, where the edge lengths are a power of their Euclidean lengths. We
are particularly interested in the squared length, which we refer to as the edge-
squared metric.

The second approach is to endow all of R? with a new metric. We start with
a cost function ¢ : R? — R that takes the point cloud into account. Then, the
length of a path v : [0,1] — R? is the integral of the cost function along the
path.

) = [etspas = | ety | 1)

The distance between two points 2,y € R? is then the length of the shortest
path between them:

dc(xvy) = iIvlfgc(’y), (2)

where the infimum is over paths that start at x and end at y. Note that the
constant function, c¢(x) = 1 for all 2 € R%, gives the Euclidean metric; whereas,
other functions allow space to be stretched in various ways.

In order to reinforce paths within clusters, one would like to assign smaller
lengths to paths that stay close to the point cloud. Therefore, the simplest nat-
ural cost function on R? is the distance to the point cloud. More precisely, given
a finite point set P the cost ¢(z) for € R is chosen to be N(z), the Euclidean
distance from x to NN(z), where NN(z) denotes the nearest point to = in P.
The nearest neighbor length (N-length) ¢x() of a curve is given by (1), where
we set ¢(xz) = N(z) for all points x € C. We refer to the corresponding metric
given by (2) as the nearest neighbor metric or simply the N-distance.

In this paper, we investigate approximation algorithms for N-distance compu-
tation. We describe a (3+¢)-approximation algorithm and a (1+¢)-approximation
algorithm. The former comes from comparing the nearest neighbor metric with
the edge-squared metric. The latter is a tighter approximation that samples the
ambient space to find good approximate geodesics.

1.1 Overview

In Section 3, we describe a constant factor approximation algorithm obtained
via an elegant reduction into the edge-squared metric introduced by [BRS11]
and [VBO03]. This metric is defined between pairs of points in P by considering
the graph distance on a complete weighted graph, where the weight of each
edge is the square of its Euclidean length. We show that the N-distance and
edge-squared metric are equivalent up to a factor of three (after a scaling by a
factor of four). As a result, because spanners for the edge-squared metric can
be computed in nearly linear time [LSV06], we obtain a (3 + €)-approximation
algorithm for computing N-distance.

Theorem 1. Let P be a set of points in R?, and let x,y € P. The nearest
neighbor distance between x and y can be approzimated within a (3 + €) factor
in O(nlogn +ne=?) time, for any 0 < e < 1.

In Section 4, we describe a (1+4¢)-approximation algorithm for the N-distance
that works in time e =@ n log n. Our algorithm computes a discretization of the
space for points that are sufficiently far from P. Nevertheless, the sub-paths that
are close to P are computed exactly. We can adapt our algorithm to work for
any Lipschitz cost function that is bounded away from zero; thus, the algorithm
can be applied to many different scenarios.

Theorem 2. For any finite set of points P C R and any fized number 0 <
€ < 1, the shortest N-distance between any pair of points of the space can be
(1 + €)-approzimated in time O(e=°Dnlogn).

1.2 Related Work

Computing the distance between a pair of points with respect to a cost function
encompasses several significant problems that have been considered by differ-
ent research communities for at least a few centuries. As early as 1696, Johann
Bernoulli introduced the brachistochrone curve, the shortest path in the pres-
ence of gravity, as “an honest, challenging problem, whose possible solution will
bestow fame and remain as a lasting monument” [Ber96]. With six solutions to
his problem published just one year after it was posed, this event marked the
birth of the field of calculus of variations.

Rowe and Ross [RRI0] as well as Kime and Hespanha [KHO03] consider the
problem of computing anisotropic shortest paths on a terrain. An anisotropic
path cost takes into account the (possibly weighted) length of the path and the
direction of travel. Note that this problem can be translated into the problem of
computing a shortest path between two compact subspaces of R under a certain
cost function

When ¢ is a piecewise constant function, the problem is known as the weighted
region problem [MP91]. Mitchell and Papadimitriou [MP91] gave a linear-time
approximation scheme in the plane and list the problem for more general cost
functions as an open problem (See Section 10, problem number (3)). Further

work on this problem has led to fast approximations for shortest paths on ter-
rains [AMS05].

Similar distances have been used in semi-supervised machine learning un-
der the name density-based distance (DBDs) [SO05]. The goal here is to place
points that can be connected through dense regions in the same cluster. Sev-
eral approaches [VB03,BCHO04] have been suggested that first estimate the den-
sity and then discretize space in a similar manner to that of Tsitsiklis [Tsi95],
however, they do not provide any analysis on the complexity of the discretized
space. Another approach is to search for shortest paths among a sample [BRS11]
and this approach was shown to give good approximations to sufficiently long
paths [HDI14]. The nearest neighbor metric can be viewed as a special case
of density-based distance when the underlying density is the nearest neighbor
density estimator.

2 Preliminaries

2.1 Metrics

In this paper, we consider three metrics. Each metric is defined by a length
function on a set of paths between two points of the space. The distance between
two points is the length of the shortest path between them.

Euclidean metric. This is the most natural metric defined by the Euclidean
length. We use ¢(y) to denote the Euclidean length of a curve «; £() can also
be defined by setting c¢(z) = 1 for all x € R? in (1). We use d(z,y) to denote the
distance between two points x,y € R? based on the Euclidean metric.

Nearest neighbor metric. As mentioned above, the nearest neighbor length of a
curve with respect to a set of points P, is defined by setting ¢() to be N(+) in (1).
The nearest neighbor length of a curve v is denoted by ¢x(7), and the distance
between two points z,y € R? with respect to the nearest neighbor metric is
denoted by dn(z,y).

Edge-squared metric. Finally, the edge-squared metric is defined as the shortest
path metric on a complete graph on a point set P, where the length of each
edge is its Euclidean length squared. The length of a path in this graph is
naturally the total length of its edges and it is denoted by lsq(y). The edge-
squared distance between two points z,y € P is the length of the shortest path
and is denoted by dsq(z,y).

2.2 Voronoi Diagrams and Delaunay Triangulations

Let P be a finite set of points, called sites, in R¢, for some d > 1. The Delaunay
triangulation Del(P) is a decomposition of the convex closure of P into simplices
such that for each simplex o € Del(P), the Delaunay empty circle property is

satisfied; that is, there exists a sphere C such that the vertices of o are on the
boundary of C' and int(C) N P is empty. The Voronoi diagram, denoted Vor(P),
is the dual to Del(P). We define the in-ball of a Voronoi cell with site p to be
the maximal ball centered at p that is contained in the cell. The inradius of a
Voronoi cell is the radius of its in-ball. We refer the reader to [DBVKOS00] for
more details.

3 N-Distance Versus Edge-Squared Distance

In this section, we show that the nearest neighbor distance of two points z,y € P
can be approximated within a factor of three by looking at their edge-squared
distance. More precisely, dsq(z,y)/4 > dn(z,y) > dsq(2,y)/12 (see Lemma 1
and Lemma 3).

As a consequence, a constant factor approximation of the N-distance can be
obtained via computing shortest paths on a weighted graph, in nearly-quadratic
time. This approximation algorithm becomes more efficient, if the shortest paths
are computed on a Euclidean spanner of the points, which is computable in nearly
linear time [Hpll]. A result of Lukovszki et al. (Theorem 16(ii) of [LSV06])
confirms that a (1 + €)-Euclidean spanner is a (1 + ¢)?-spanner for the edge
squared metric. Therefore, we obtain Theorem 1.

3.1 The Upper Bound

We show that the edge-squared distance between any pair of points z,y € P
(with respect to the point set P) is always larger than four times the N-distance
between x and y (with respect to P). To this end, we consider any shortest path
with respect to the edge-squared measure and observe that its N-length is an
upper bound on the N-distance between its endpoints.

Lemma 1. Let P = {p1,p2,...,pn} be a set of points in R, and let dx and
dsq be the associated nearest neighbor and edge-squared distances, respectively.
Then, for any distinct points x,y € P, we have that dx(x,y) < %dsq(ac,y).

3.2 The Lower Bound

Next, we show that the edge-squared distance between any pair of points from
P cannot be larger than twelve times their N-distance. To this end, we break a
shortest path of the N-distance into segments in a certain manner, and shadow
the endpoints of each segment into their closest point of P to obtain a short
edge-squared path. The following definition formalizes our method of discretizing
paths.

Definition 1. Let P = {p1,p2,--- ,pn} be a set of points in R?, and let x,y € P.
Let~ : [0,1] — R? be an (x, y)-path that is internally disjoint from P. A sequence
0 <ty <ty <--- <t <1 isa proper breaking sequence of v if it has the
following properties:

1. The nearest neighbors of v(to) and ~v(tg) in P are x and y, respectively.
2. For all 1 <i <k, we have {(Y[ti—1,t;]) = $(N(v(ti—1)) + N(v(t;)))

The following lemma guarantees the existence of breaking sequences.

Lemma 2. Let P = {p1,pa,- - ,pn} be a set of points in R?, and let x,y € P.
Let v be a path from x to y that is internally disjoint from P. There exists a
proper breaking sequence of .

Given a path 7y that realizes the nearest neighbor distance between two points
x and y, in the proof of the following lemma we show how to obtain another
(z,y)-path with bounded edge-squared length. The proof heavily relies on the
idea of breaking sequences.

Lemma 3. Let P = {p1,p2,--- ,pn} be a set of points in R, and let dx and
dsq be the associated nearest neighbor and edge-squared distances, respectively.
Then, for any distinct points x,y € P, dn(x,y) > %dsq(x,y).

4 A (1 + e)-Approximation of the N-Metric

In this section, we describe a polynomial time approximation scheme to compute
the N-distance between a pair of points from a finite set P C R%. The running
time of our algorithm is e=?(@nlogn for n points in d-dimensional space. We
start with Section 4.1, which describes an exact algorithm for the simple case in
which P consists of just one site. Section 4.2 describes how to obtain a piecewise
linear path using infinitely many Steiner points, the technical details of which
may be found in the full version [CFMT15]. Section 4.3 combines ideas from
4.2 and 4.1 to cut down the required Steiner points to a finite number. Finally,
Section 4.4 describes how to generate the necessary Steiner points.

4.1 Nearest Neighbor Distance with One Site

We describe a method for computing dy for the special case that P is a single
point using complex analysis. This case will be important since distances will go
to zero at an input point and thus we must be more careful at input points. Far
from input points, we use a piecewise constant approximation for the nearest
neighbor function, and near input points, we use exact distances. More than
likely this case has been solved by others since the solution is so elegant. We
refer the interested reader to [Str] for more general methods to solve similar
problems in the field of calculus of variations.

Suppose we want to compute dy(z,y) where P = {(0,0)}. Writing (z,y) € C
in polar coordinates as z = re*?, we define the quadratic transformation f: C —

R by _
f(z) = 22/2 = (r?/2)e™,

where R is the two-fold Riemann surface; see Figure 2. The important point
here is that the image is a double covering of C. For example, the points 1 and

Fig. 2: To make the complex function one-to-one, one needs to extend the complex
plane to the two-fold cover called the two-fold Riemann Surface.

—1 are mapped to different copies of 1/2. Therefore, on the Riemann surface,
the distance between 1 and —1 is one and the shortest path goes through the
origin. More generally, given any two nonzero points p and g on the surface,
the minimum angle between them (measured with respect to the origin) will be
between 0 and 27. Moreover, if this angle is > 7, then the shortest path between
them will consist of the two straight lines [p,0] and [0, ¢]. Otherwise, the line
[p, q] will be a line on the surface and, thus, the geodesic from p to q.

Let dr denote the distance on the Riemann surface. We next show that for
a single point, the nearest neighbor geodesic is identical to the geodesic on the
Riemann surface.

Lemma 4. Lety: [0,1] — C be a curve. Then, the image of v under f, denoted
by f o~y satisfies the following property:

dr(f o) =In(7)

Proof. Suppose v: [0,1] — C is any piecewise differentiable curve, and let o :=
fory. The N-length ¢x(7y) of ~y is the finite sum of the N-length of all differentiable
pieces of «y. If the path v goes through the origin, we further break the path at the
origin so that « is also differentiable. Thus, it suffices to consider (a,b) C [0, 1]
so that v[a, b] is a differentiable piece of ~. Then, we have

b
tx(lat) = [h@I @l || s modulus
b
= / [y ()~ (t)] dt Modulus commutes with product.
b
= / "(t)] dt Chain rule.

|
= lr(a[f(a), f(b)]).

Corollary 1 (Reduction to Euclidean Distances on a Riemann Sur-
face). Given three points x, y, and p in R? such that p = NN(z) = NN(y), the
nearest neighbor geodesic G from x to y satisfies the following properties:

1. G is in the plane determined by x,y, p.
2. (a) If the angle formed by x,p,y is w/2 or more, then G consists of the two
straight segments Tp and Dy.

(b) Otherwise, G is the preimage of the straight line from f(x) to f(y),
where f is the quadratic map in the plane given by x,y,p to the Riemann
Surface.

4.2 Approximating with Steiner Points

Assume P C R, 2,y € P, and let v be an arbitrary (z,y)-path. We show how
to approximate v with a piecewise linear path through a collection of Steiner
points in R%. To obtain an accurate estimation of , we require the Steiner points
to be sufficiently dense. The following definition formalizes this density with a
parameter 0.

Definition 2 (6-sample). Let P = {p1,p2,--- ,pn} be a set of points in R?,
and let D C RY. For a real number 0 < 6§ < 1, a d-sample is a (possibly infinite)
set of points T C D such that if z € D\ P, then d(z,T) < ¢ - N(2).

The following lemma guarantees that an accurate estimation of v can be
computed using a d-sample. Its proof may be found in the full paper [CFM™15].

Lemma 5. Let P = {p1,p2,--- ,pn} be a set of points in R, and let S be a
d-sample, and let 0 < § < 1/10. Then, for any pair of points x,y € P, there is
a piecewise linear path n = (x,s1,...,8k,Yy), where s1,...,s, € S, such that:

In(n) < (14 C16%3)dn(z,),
and, forall1 <i<k—1,
In((si, 8i41)) < Oz - 6%/3 - N(s;).

C1 and Cy are universal constants.

4.3 The Approximation Graph

So far we have shown that any shortest path can be approximated using a 6-
sample that is composed of infinitely many points. In addition, we know how to
compute the exact N-distance between any pair of points if they reside in the
same Voronoi cell of Vor(P). Here, we combine these two ideas to be able to
approximate any shortest path using only a finite number of Steiner points. The
high-level idea is to use the Steiner point approximation while v passes through
regions that are far from P and switch to the exact distance computation as
soon as <y is sufficiently close to one of the points in P.

Let P = {p1,p2,-- ,pn} be a set of points in R?, and let B be any convex
body that contains P. Fix § € (0,1), and for any 1 < i <mn, let r; = rp(p;) be
the inradius of the Voronoi cell with site p;. Also, let u; = (1 — §%/%)r;. Finally,
let S be a d-sample on the domain B\ |J; «;,, B(pi, ;).

Definition 3 (Approximation Graph). The approxzimation graph

A = AP, {uy,...,un},S,0) = (Va,E4) is a weighted undirected graph, with
weight function w : E4 — RT. The vertices in V4 are in one to one correspon-
dence with the points in S'U P; for simplicity we use the same notation to refer
to corresponding elements in S U P and V4. The set E4 is composed of three
types of edges:

1. If s1,82 € S and s1,s2 € B(pi,r;) for any p;, then (s1,s2) € E4 and
w(s1, s2) = dn(s1, s2). We compute this distance using Corollary 1.

2. Otherwise, if s1,82 € S and (1, 52) < C96%/3 max(N(s;),N(s2)), where Cy
is the constant of Lemma 5, then (s1,s2) € E4 and w(s1, s2) = max(N(s1), N(s2))-
0(s1,82).

3. If sy € S and s1 € B(p;,r;) then (pi,s1) € E4 and w(p;, 1) = dn(pi, $1) =
(d(ps, 51))?/2; see Corollary 1.

For x,y € Vx let da(x,y) denote the length of the shortest path from x toy in
the graph A.

The following lemma guarantees that the shortest paths in the approximation
graph are sufficiently accurate estimations. Its proof my be found in the full
paper [CFMT15].

Lemma 6. Let {u,...,u,}, S and§ be defined as above. Let A(P,{uq,...,un},S,9)
be the approximation graph for P. For any pair of points x,y € P we have:

(1= C20%7) - dn(z,y) < da(z,y) < (14 C10*?) - dn(a,y),

where Cy and Cy are constants computable in O(1) time.

4.4 Construction of Steiner Points

The only remaining piece that we need to obtain an approximation scheme is an
algorithm for computing a §-sample. For this section, given a point set T and
x €T, let rr(x) denote the inradius of the Voronoi cell of Vor(T') that contains
x. Also, given a set T and an arbitrary point « (not necessarily in T), let fr(x)
denote the distance from z to its second nearest neighbor in 7.

We can apply existing algorithms for generating meshes and well-spaced
points to compute a §-sample on D\ |J, B(pi,u;), where D C R? is a domain,
and u; = (1 — 8%/3)rp(p;). The procedure consists of two steps:

1. Use the algorithm of [MSV13] to construct a well-spaced point set M (along
with its associated approximate Delaunay graph) with aspect ratio 7 in time
20D (nlogn + |M]).

2. Then over-refine M to S for the sizing function g(z) = %fp () (while
maintaining aspect ratio 7) in time 2°(9)|S| by using the algorithm of Section
3.7 in [Shell]. (see also [HOMS10] for an earlier use of this technique)

In the above algorithm, we will choose T to be a fixed constant, say, 7 = 6. Both
of the meshing algorithms listed above are chosen for their theoretical guaran-
tees on running time. In practice, one could use any quality Delaunay meshing
algorithm, popular choices include Triangle [She96] in R? and Tetgen [Sill] or
CGAL [ART"12] in R3.

From the guarantees in ([Shell]), we know that

15| =0 </D g(dj)d) — 50y log A, 3)

where A is the spread of P, i.e., the ratio of the largest distance between two
points in P to the smallest distance between two points in P.

Now, it remains to show that the point set S is indeed a d-sample on D \
U, B(pi, u;). This is provided by the following lemma, whose proof may be found
in the full paper [CFM™15].

Lemma 7. S is a §-sample on D\ |J; B(pi, ;).

Now, we calculate the number of edges that will be present in the approxi-
mation graph defined in the previous section. For this, we require a few lemmas.

Lemma 8. Let A = B(p;,rp(p;)) \ B(pi,u;) be an annulus around p;. Then,
AN S| =60,

Proof. By the meshing guarantees of [Shell], we know that for any point s €
ANS, B(s,t) does not contain a point from S\{s} for t = 2(rs(s)) = 2(5-rp(p)).
Thus, the desired result follows using a simple sphere packing argument.

Lemma 9. If s € S, then |B(s,C20%/3N(s)) N S| = 6= 9@ where Cy is the
constant in Lemma 5.

Proof. As in the previous lemma, meshing guarantees tell us that for any s’ €
B(s,(C26%/3N(s)), we have that B(s',t) does not contain a point from S\ {s'}
for t = £2(0-N(s")) = £2(6 - N(s)). Thus, we again obtain the desired result from
a sphere packing argument.

From the above lemmas, we see that A is composed of |S| = 6= Cnplog A
vertices and nd~ 9@ || 679 = |§|. 59D edges.

Remark. Note that the right hand side of (3) is in terms of the spread, a non-
combinatorial quantity. Indeed, one can construct examples of P for which the
integral in (3) is not bounded from above by any function of n. However, for
many classes of inputs, one can obtain a tighter analysis. In particular, if P
satisfies a property known as well-paced, one can show that the resulting set S
will satisfy |S| = 2°@n (see [MPS08,Shel2]).

In a more general setting (without requiring that P is well-paced), one
can modify the algorithms to produce output in the form of a hierarchical
mesh [MPS11]. This then produces an output of size 2°(¥n, and (1+¢)-approximation

algorithm for the nearest neighbor metric can be suitably modified so that the
underlying approximation graph uses a hierarchical set of points instead of a
full §-sample. However, we ignore the details here for the sake of simplicity of
exposition.

The above remark, along with the edge count of A and the running time guar-
antees from [MSV13], yields Theorem 2, the main theorem of this section.

5 Discussion

Motivated by estimating geodesic distances within subsets of R™, we consider two
distance metrics in this paper: the N-distance and the edge-squared distance.
The main focus of this paper is to find an approximation of the N-distance.
One possible drawback of our (14 ¢)-approximation algorithm is its exponential
dependency on d. To alleviate this dependency a natural approach is using a
Johnson-Lindenstrauss type projection. Thereby, we would like to ask which
properties are preserved under random projections such as those in Johnson-
Lindenstrauss transforms.

We are currently working on implementing the approximation algorithm pre-
sented in Section 3. We hope to show that this approximation is fast in practice
as well as in theory.

Acknowledgement

The authors would like to thank Larry Wasserman for helpful discussions.

References

AMSO05. L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approxi-
mate shortest paths on weighted polyhedral surfaces. J. ACM, 52(1):25—
53, January 2005.

ARTT12. Pierre Alliez, Laurent Rineau, Stéphane Tayeb, Jane Tournois, and Mari-
ette Yvinec. 3D mesh generation. In CGAL User and Reference Manual.
CGAL Editorial Board, 4.1 edition, 2012.

BCHO04. Olivier Bousquet, Olivier Chapelle, and Matthias Hein. Measure based
regularization. In 16th NIPS, 2004.

Ber96. Johann Bernoulli. Branchistochrone problem. Acta Eruditorum, June
1696.

BRS11. Avleen Singh Bijral, Nathan D. Ratliff, and Nathan Srebro. Semi-

supervised learning with density based distances. In Fabio Gagliardi
Cozman and Avi Pfeffer, editors, UAI pages 43-50. AUAI Press, 2011.
CFM™15. Michael B. Cohen, Brittany Terese Fasy, Gary L. Miller, Amir Nayyeri,
Donald Sheehy, and Ameya Velingker. Approximating nearest neighbor
distances. CoRR, abs/1502.08048, 2015.
DBVKOS00. Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational Geometry. Springer, 2000.

HDI14.

HOMS]10.

Hpll.

KHO03.

LSVO06.

MPOI1.

MPS08.

MPS11.

MSV13.

RR90.

She96.

Shell.

Shel2.
Sill.

SO05.

Str.
Tsi95.

VBO03.

Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero III. Shortest
path through random points. 2014. arXiv/1202.0045v3.

Benoit Hudson, Steve Y. Oudot, Gary L. Miller, and Donald R. Sheehy.
Topological inference via meshing. In SOCG: Proceedings of the 26th
ACM Symposium on Computational Geometry, 2010.

Sariel Har-peled. Geometric Approxzimation Algorithms. American Math-
ematical Society, Boston, MA, USA, 2011.

J. Kim and J.P. Hespanha. Discrete approximations to continuous
shortest-path: Application to minimum-risk path planning for groups
of vavs. In 42nd IEEE ICDC, Jan 2003.

Tamds Lukovszki, Christian Schindelhauer, and Klaus Volbert. Resource
efficient maintenance of wireless network topologies. Journal of Universal
Computer Science, 12(9):1292-1311, 2006.

Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted
region problem: finding shortest paths through a weighted planar subdi-
vision. J. ACM, 38(1):18-73, January 1991.

Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Linear-size meshes.
In CCCG: Canadian Conference in Computational Geometry, 2008.
Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Beating the spread:
Time-optimal point meshing. In SOCG: Proceedings of the 27th ACM
Symposium on Computational Geometry, 2011.

Gary L. Miller, Donald R. Sheehy, and Ameya Velingker. A fast algo-
rithm for well-spaced points and approximate delaunay graphs. In 29th
SOCG, SoCG 13, pages 289-298, New York, NY, USA, 2013. ACM.
Neil Rowe and Ron Ross. Optimal grid-free path planning across ar-
bitrarily contoured terrain with anisotropic friction and gravity effects.
IEEE Transactions on Robotics and Automation, 6(5):540-553, 1990.
Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Applied Computational Geom-
etry, volume 1148 of Lecture Notes in Computer Science, pages 203—222,
1996.

Donald Sheehy. Mesh Generation and Geometric Persistent Homology.
PhD thesis, Carnegie Mellon University, Pittsburgh, July 2011. CMU
CS Tech Report CMU-CS-11-121.

Donald R. Sheehy. New Bounds on the Size of Optimal Meshes. Com-
puter Graphics Forum, 31(5):1627-1635, 2012.

Hang Si. TetGen: A quality tetrahedral mesh generator and a 3D De-
launay triangulator. http://tetgen.org/, January 2011.

Sajama and Alon Orlitsky. Estimating and computing density based
distance metrics. In ICML ’05, pages 760-767, New York, NY, USA,
2005. ACM.

John Strain. Calculus of variation. http://math.berkeley.edu/
~strain/170.513/cov.pdf.

John N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
IEEE Transactions on Automatic Control, 40:1528-1538, 1995.

Pascal Vincent and Yoshua Bengio. Density sensitive metrics and kernels.
In Snowbird Workshop, 2003.

http://tetgen.org/
http://math.berkeley.edu/~strain/170.S13/cov.pdf
http://math.berkeley.edu/~strain/170.S13/cov.pdf

	Approximating Nearest Neighbor Distances

