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Abstract

Many surfactant-based formulations are utilised in industry as they produce de-

sirable visco-elastic properties at low-concentrations. These properties are due to the

presence of worm-like micelles (WLM) and, as a result, understanding the processes that
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lead to WLM formation is of significant interest. Various experimental techniques have

been applied with some success to this problem but can encounter issues probing key

microscopic characteristics or the specific regimes of interest. The complementary use

of computer simulations could provide an alternate route to accessing their structural

and dynamic behaviour. However, few computational methods exist for measuring key

characteristics of WLMs formed in particle simulations. Further, their mathematical

formulation are challenged by WLMs with sharp curvature profiles or density fluctua-

tions along the backbone. Here we present a new topological algorithm for identifying

and characterising WLMs micelles in particle simulations which has desirable mathe-

matical properties that address short-comings in previous techniques. We apply the

algorithm to the case of Sodium dodecyl sulfate (SDS) micelles to demonstrate how it

can be used to construct a comprehensive topological characterisation of the observed

structures.

1 Introduction

Micelles play an important role in many processes and products. For example, micelles

can be used to control drug release,1–7 are key in household cleaning products,8,9 and can

act as friction modifiers in vehicle engines.10,11 They display a wide variety of fluctuating

behaviours and morphologies depending upon the surfactant from which they are assembled

and the environment in which they reside. The different structures formed by micelles give

rise to multiple possible behaviours including interesting optical and rheological properties.

For example, rod- and worm-like micelles (WLMs) are associated with a significant increase

in overall viscosity of a liquid when compared to spherical micelles. WLMs are long flexible

cylinders with diameters (for typical surfactants molecules) of approx 3-5 nm and persistence

lengths of approx. 20 nm below which they should be considered as rigid rods. These micelles

are able to grow to a length of several micrometers at relatively low surfactant concentrations

resulting in the occurrence of entanglements and ultimately enhanced visco-elasticity. 12–15
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Under certain conditions WLMs may branch between each other to form interconnected

networks. For example, electrostatic screening by counter-ions is known to promote WLM

branch formation.16–18 Whilst long entangled micelles lead to increased zero-shear viscosity,

branching and network formation is generally believed to lower it. 19,20 Thermal fluctuations

can cause micelle branches to slide along the main micelle backbone chain thereby providing

an accessible mode of stress relaxation.19,21 It is believed this in turn leads to a reduction in

viscosity when compared to an entangled matrix of WLMs. 17,21–24

The formation of WLM structures is dependent upon the underlying structural char-

acteristics of the surfactants molecules from which they are constructed. Surfactants that

form WLMs preferentially pack into cylindrical shapes. Additives can significantly alter this

preference through, for example, hydrophobic binding and electrostatic screening, leading to

changes in WLM structure and rheological properties.

Exploring the behaviour of WLMs can be challenging using experimental methods. Cryo-

TEM gives the researcher a window into the micelle structure but this approach can be diffi-

cult because of the high viscosities of concentrated surfactant solutions. Pulsed gradient spin-

echo nuclear magnetic resonance (PGSE-NMR)25 and multiple scattering approaches26,27 can

supply information on the branching behaviour of micelles. However, branching is most often

inferred from rheological observations (i.e., a decrease in the zero shear viscosity).

Computer simulations offer a complementary approach to existing experimental tech-

niques for studying WLMs and are beginning to shine some light onto the structural and

dynamic behaviour of WLMs. Self-assembly of surfactant molecules into micelles is difficult

to simulate with all-atom methods, such as Molecular Dynamics (MD), due to the high

computational cost associated with obtaining appropriate length and time-scales. Conse-

quently only a few micelles can currently be studied with these techniques. As such, coarse-

grained (CG) approaches are often applied in the study of micelles, such as the MARTINI

force-field.9,16,18,28–40 Dissipative Particle Dynamics (DPD) is another CG approach which

is becoming increasingly popular for the simulation of micelle behaviour as it allows signif-
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icantly longer length and time-scales to be accessed at reduced computational cost (albeit

with a potential loss in accuracy).41–43 DPD employs very soft conservative potentials which

facilitates the use of large time-steps. Further details of the DPD method can be found in

the literature.41–44A recent review on simulating surfactants and micelle systems (including

WLMs) using a variety of particle-based simulation techniques has been presented by Tad-

dese et al.45 In addition, a review of the application of computer simulation to the study of

WLMs can be found in reference.46

A number of rudimentary analytical approaches have been used to characterise micelles

including aggregation numbers and size distributions, radius of gyration, asphericity 47 which

are often adequate for small micelles with simple topological structures but less appropriate

for larger and more topologically complex structures such as WLMs. Here quantification

of branch points, micelle backbone length and end-cap formation are more important but

far less methods exist in the literature for capturing these properties. A notable exception

is the work of Dhakal and Sureshkumar who have employed a contour mesh measurement

approach to calculate a micelle backbone length scale and identify micelle branch points

and end-caps.16 This model was later successfully employed to examine the stress relaxation

modes of branched micelles.21 Nevertheless, their contour length measurement algorithm is

mathematically limited to piecewise linear backbone length metrics where each constituent

line is of equal length. A more comprehensive topological framework is required to accu-

rately represent the geometric complexity of micelles with sharp curvature profiles or den-

sity fluctuations along the backbone. In particular, these latter considerations cannot be

overlooked when one wishes to simulate multi-component industrial formulations where sur-

factant polydispersity, and the presence of co-surfactants and modifiers potentially require

additional scrutiny.

The remainder of this article is arranged as follows. First, we give an overview of the

topological algorithm applied to characterise the salient geometric length scales of WLMs

and branches. Next, we detail the DPD simulation protocol and SDS micelle system test
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Figure 1: The key stages in the application of the topological algorithm. a) Micelle point
cloud, b) structural segmentation, and c) geometric backbone network.

case considered in this study. We then present our observations for the SDS test case. The

paper concludes with a discussion on the developed topological algorithm including how

some of the computed metrics can be utilised as input parameters to macroscopic micelle

viscoelasticity models.

2 Characterisation of Micelle Topology

2.1 Algorithmic Design

The framework behind the topological characterisation algorithm introduced in this article

is outlined in Fig. 1. First, individual micelles are identified using trajectory data from DPD

simulations (See Section 3.1). Each micelle can be represented in the form of a point cloud

(and neighbourhood graph) which is the set of 3D spatial coordinates of each molecular bead

in the cluster (Fig. 1a). Next, the point cloud structure undergoes an operation known as

Fiedler vector segmentation which partitions the structure into a number of distinct regions

with corresponding centre points (Fig. 1b). This exercise is repeated until an optimal

spectral clustering is achieved which captures important features such as branch points and

loops without overfitting (Fig. 2). Finally, these points are joined together to produce a

piecewise linear (PL) skeleton of the micelle (Fig. 1c) composed of a set of consecutive

linear segments of varying individual lengths. This key step allows us to calculate a series of

structural micelle characteristics such as the micelle backbone length, the number of branch
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points and the Euclidean distance between end-caps.

A description of the theory underpinning the mathematical framework is presented in

the Supporting Information.

(a) (b) (c)

Figure 2: Recursive spectral segmentation of a micelle point cloud into four subsets
corresponding to the black vertices. Red vertices indicate links between these subsets.

2.2 Spectral Splits

The spectral gap, denoted here by λ, is equal to the first eigenvalue of the discrete Lapla-

cian.48 The general protocol is to recursively split sets at their spectral gaps (with further

information outlined in the Supporting Information). This process works well for large

WLMs; however, overfitting from unnecessary cuts leads to excess length and inaccurate

branch points in smaller micelles without clear WLM structure. To avoid this, we introduce

a bound λmax on the spectral gap λ of each potential split which ensures a sufficiently sparse

cut. We note that recursion introduces new eigenvalues for each segment generated and new

spectral gaps. On these data sets, we have observed that the spectral gaps increase during

recursion.

There are two fundamental properties of a good split that can be revealed by the spectral

gap:

a. Size of subsets: The resulting subsets are sufficiently large and contain approximately
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the same number of vertices.

b. Number of connecting edges: The number of edges extending from one subset to

the other is small.

Figure 3 depicts splits which violate these properties, with the two subgraphs resulting

from the split in red and blue, and edges between vertices surrounding the split in black.

(a) One subset (blue) is too small
(λ = 0.0426).

(b) Too many connecting edges.
(λ = 0.1085).

Figure 3: Cuts where the spectral gap reveals violations of the properties of a “good” split.

Empirically, we have discovered that terminating the recursion when any newly computed

spectral gap value exceeds λmax = 0.015 has been a good stopping criterion over the data

tested. Since this was determined empirically, there is no claim that the value of 0.015 is

optimal.

2.3 Implementation

2.3.1 Segmentation

The recursive procedure Segment is detailed in Algorithm 1. For each recursive step the

spectral gap λ is used as a stopping condition so that recursion can only continue when

λ > λmax. To avoid overfitting we impose a soft maximum recursion depth kmax. To avoid

underfitting, we set a lower bound λmin on the spectral gap so that kmax only applies when

λmin ≤ λ ≤ λmax. It can be shown that the gap of each of the resulting subgraphs must be

greater than λ and continued partitioning will converge to λmin.
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Algorithm 1 Recursive segmentation.
Require: kmax, λmin, λmax . Global parameters.

function Segment(G = (V,E), k = 0) . Input graph G and depth counter k.
L← NormalizedLaplacian(G) . Compute the normalized Laplacian of G.
{(λi, wi)}λi≤λi+1

← EigenDecomp(L) . Eigenvalues λi and vectors wi sorted by λi.
λ, f ← λ1, w1 . Ensure 0 = λ0 < λ1.
if λ < λmax then

G1, G2 ← Split(G, f) . G1, G2, and link stored in structure.
if k < kmax or λ < λmin then . Continue if gap is still small.

Segment(G1, k + 1) . Recurse on G1.
Segment(G2, k + 1) . Recurse on G2.

end if
end if

end function

The Split procedure, detailed in Algorithm 2, takes a graph G and partitions its vertices

by the vector f . For each split the resulting graph partition has vertices corresponding to

subgraphs G1 and G2 which are stored in a tree structure T with children(G) = {G1, G2}.

If G is connected, a single split will result in one edge added to the graph partition which

corresponds to a link subgraph Gl that associates its children. This association captures the

vertices in the graph partition which are split by Gl and will be denoted by nbr(Gl) so that

nbr(Gl) = {G1, G2} initially. The asymptotic complexity is bounded above, quadratically, 49

by the eigendecomposition of a graph Laplacian, but implementation optimizations greatly

improve the amortized running time in practice.

Although each step of the segmentation resembles a graph partition the resulting struc-

ture is not, strictly speaking, a graph partition. This is due to the fact that when child

subgraphs G1 and G2 are split further, nbr(Gl) is updated to include the children of G1 and

G2 containing vertices in Gl. Letting leaf(T ) = {H1, . . . , Hm} denote the set of subgraphs

corresponding to leaf nodes and links(T ) = {L1, . . . , Lk} denote the collection of links at

any point in the segmentation we have

nbr(Lj) = {Hi ∈ T | H ∩ Lj 6= ∅},
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for all Lj ∈ links(T ), where the intersection is taken as the intersection of vertex sets.

Note that a link node may associate more than two leaf nodes, indicating a branch point

in the skeleton. An additional step merges intersecting links under certain conditions. The

resulting structure is therefore not a graph partition as we treat the links as vertices of the

skeleton which may have degree greater than two.

Algorithm 2 The split procedure.
Require: Tree T with subgraphs as nodes.

Stores parent / child relationships and links between leaf nodes.
function Split(G = (V,E), f) . Input graph G and Fiedler vector f

Split G into subgraphs G1, G2 and Gl by f .
Set children(G) = {G1, G2}.
Set nbr(Gl) = {G1, G2} and add Gl to links(T ).
for L ∈ links(T ) such that G ∈ nbr(L) do

Remove G from nbr(L).
for H ∈ children(G) such that H ∩ L 6= ∅ do

Add H to nbr(L).
end for
if Gl ∩ L 6= ∅ then

Merge links Gl and L.
end if

end for
return G1, G2

end function

When the segmentation procedure terminates the leaf nodes of the resulting tree structure

correspond to a collection of subgraphs with vertex sets that partition the input vertices.

We will refer to these leaf subgraphs as leaf(T ) = {H1, . . . , Hm} and the collection of link

subgraphs as links(T ) = {L1, . . . , Lk}.

2.3.2 Skeletonization

Recall that each vertex vi in a micelle graph G = (V,E) is associated with a point pi ∈ R3

that gives the location of the corresponding DPD bead in the micelle. Therefore, the vertex

set of a subgraph G′ = (V ′, E ′) of G can be associated with a collection of points in R3,
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denoted

G′ = {pi ∈ R3 | vi ∈ V ′}.

Let φ be the centroid function, which maps subsets of R3 to a single point, by

φ(P ) =
1

|P |
∑
p∈P

p

where |P | denotes the cardinality of P .

For a micelle graph G = (V,E) the segmentation procedure yields a tree T such that

leaf(T ) = {H1, . . . , Hm} is a collection of subgraphs and links(T ) = {L1, . . . , Lk} is a

collection of links. Note that the vertex sets of subgraphs in leaf(T ) partition V and the

edge sets of subgraphs in leaf(T )∪ linkss(T ) and partition E. The segmentation graph of

G is defined as a graph S = (VS, ES) with vertex set

VS = links(T ) ∪ links(T )

and edge set

ES = {{Lj, Hi} | Li ∈ links(T ) and Hi ∈ nbr(Lj)}.

The skeleton of a segmentation graph by a function φ is the graph Sφ = (VS
φ
, ES

φ
) with

vertex set

VS
φ
= {φ(v) ∈ R3 | v ∈ VS}

and edge set

ES
φ
= {{φ(u), φ(v)} | {u, v} ∈ ES}

and corresponds to a collection of line segments in R3 drawn between the centroids of points

in the leaves and links of T .
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2.3.3 Estimating the Full Length

We first produce an approximating PL curve that connects the centroids. This curve remains

within the interior of the point cloud, so its length is an underestimation. We add additional

cap nodes to approximate the full length. At each terminal point of the curve, extend the

containing segment until it exits the point cloud. The cap node is that exit point. Figure 4

depicts a case in which the cap nodes yield a far more accurate calculation of length.

(a) Underestimated length. (b) Refined length.

Figure 4: The addition of cap nodes has a significant effect on the approximated length.

2.3.4 Skeleton Repair

After initial skeletonization, additional segmentation may be required for more complex

micelles, in particular for those with branched structure. Fig. 5a depicts a case in which

the skeleton does not accurately capture the micelle’s structure, resulting in a missed cap

node. This is due to a degenerate case in which an end segment has two connections which

are too close (Fig. 5b). The final step repairs any degenerate end segments, ensuring that

the resulting skeleton accurately reflects both the length and the branching structure of the

micelle (Fig. 5c).
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(a)

(b)

→

(c)

Figure 5: A degenerate segment, corresponding to the vertex in blue, is repaired.

Fig. 5 shows a representative situation, as the blue node has two neighboring nodes,

shown in red. The Euclidean distance between the two red nodes is quite small compared

to the distance between them, measured along the PL curve. This intuition is captured as

a bound on the ratio of the two distances. In particular, we repair a subset of the PL curve

when this ratio is less than 0.2. In Fig. 5c the repair is indicated by a new blue node, as a

common point for two new subsets of a new PL curve.

2.3.5 Estimating a Cross-sectional Radius

After the skeleton has been stabilized, an estimate of a cross-sectional radius for each WLM

can be computed. The role of this radius is to approximate a tube of fixed radius, around the

skeleton, so that all points of the WLM lie within the tube. For each cluster, the minimum
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Euclidean distance from each cluster point to the local linear segment of the skeleton is

computed, producing a local radius for each cluster. The final estimate rcs for the cross-

sectional radius is the minimum over all these radii as a reliable lower bound.

3 Simulation Protocol

To explore the capabilities of the topological characterisation algorithm we performed nine

Dissipative Particle Dynamics (DPD) simulations of mixtures of SDS, water and NaCl using

the DLMESO simulation package.50 SDS was chosen as our test case as it is known to readily

form WLMs in the presence of salt.51 Each simulation cell contained 10 w/w% SDS, a fixed

amount of NaCl (ranging between 0 - 8 w/w% ), and water. Together, these simulations

are analogous to performing a salt curve experiment. 51 An overview of the model used is

presented in the Appendix.

Simulations were started from a random configuration and run for a total of 8 million

time steps under isothermal-isobaric conditions (NPT) corresponding to room temperature

(KBT = 1, 298 K) and at one atmosphere pressure (23.7 in DPD units 42) with a time step

of 0.02. A Langevin piston barostat was employed to control the pressure. 52 The initial

simulation box had side lengths of 40 DPD units (22.6 nm following our DPD to real unit

mapping). with periodic boundary conditions applied in all three Cartesian directions. An

established automated time series equilibration protocol was employed for each observable

time series. (See the Supporting Information for further details.)

3.1 Micelle Identification and Characterisation

During the simulation, the SDS molecules self-organise into a range of aggregates, transient

in nature and of various sizes. At each sampled time frame we used a distance clustering

algorithm to determine each aggregate provided by the analytics program UMMAP. 47 An

aggregate is defined as the complete set of molecules where each molecule lies no further than
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1 DPD unit from another molecule as defined by the distance between beads of two different

molecules. Each bead of the aggregate becomes a vertex (vi) of the aggregate and the vector

between the pairs of beads that satisfies the distance criteria are referred to as an edge

(eij) between the corresponding vertices vi and vj. A micelle was defined as an aggregate

composed of 15 or more constituent surfactant molecules. 53 Smaller aggregates are assigned

to be monomers. From this we calculated the following properties: the number-averaged Ns

and weight-averaged Nws micelle size, the maximum micelle size Nmax and the number of

micelles Nm.

The topology algorithm was then applied to each micelle and from this several proper-

ties were calculated which included: cross-sectional radius rcs, the number-averaged lb and

weight-averaged lwb micelle backbone lengths, the number-average end-to-end length le and

number of branched micelles Nb,m. Here a branched micelle is defined as one with three or

more end-caps, while the end-to-end length involves the summation of the Euclidean distance

between each pair of end-caps in the micelle. A micelle curvature ratio parameter α = lb/le

was also applied as a simple metric to describe the curvature of the micelle worms. 54–56 A full

mathematical derivation of how each observable is calculated is provided in the supporting

information.

4 Test Case: SDS Micelle Properties in the Presence of

NaCl

In this section we examine the application of the topological algorithm to elucidate the

structural evolution of SDS micelles as a function of salt concentration. Fig. 6 depicts the

various micelle morphologies extracted from the simulations at different levels of NaCl, where

each cluster is coloured as per its shape categorisation derived from the UMMAP package. 47

Our topological algorithm partitions the extended UMMAP shape category (orange micelles

in Fig. 6) into WLMs and branched micelles, producing the calculated micelle metrics shown
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Figure 6: Snapshots of the micelle morphologies of each simulation. The caption of each
subplot denotes the salt concentration (w/w %) while the colors denote chemically

significant changes in shape.47

in Fig. 7.

In the absence of salt (Fig. 6a), the electrostatic interactions between the sulphate head

groups produces an unscreened effective repulsive barrier. This inhibits cluster aggregation
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and results in the formation of small spherical clusters where the surface area is minimised

in order to reduce repulsive head group electrostatic interactions. 18 As salt is added to the

system, it screens these electrostatic interactions leading to micelle elongation (Fig. 6b) and

a reduction in their number (Fig. 7e).

As salt concentration is incremented further, the disruption of the electrostatic repulsion

facilitates the transition from rod-like to WLM micelles (Fig. 6b & c). Eventually, it is

screened to such an extent that branching node points can develop (Fig. 6c & d) as measured

in Fig. 7d. That is to say that branch points where three micelle segments intersect become

energetically possible. This signifies the emergence of branched micelles and coincides with

further reductions in the number of micelles (Fig. 7e) and expanding micelle backbone

networks (Fig. 7b). This trend continues until we end up with one extensive branched

micelle which is progressively developing more node points (Fig. 7f).

Figure 7: Plots of the calculated micelle structural metrics evaluated for the test case salt
curve scan.

Note that we examine the equilibrated values for the structural features and precise
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information about merging events is neglected in this work (interested readers are directed

towards the following references18,21).

Figure 8: Micelle backbone length probability distributions for a variety of different salt
concentrations (w/w %). (a) 0%, b) 2.58%, c) 3.26%, d) 3.96%, e) 4.68%, f) 5.42%, g)

6.17%, h) 6.94% and i) 7.73%.

While the size and length of micelles increases drastically with the addition of salt, the

micelle radius remains relatively constant throughout as shown in Fig. 7a. This result is

consistent with classical micelle theory54–57 which dictates that the radius of a rod-like or

worm-like micelle is independent of its backbone length. As expected, this characteristic

equilibrium length scale was estimated to be a little less than the maximum length of a

single SDS molecule58 (2nm ≈ 3.54 DPD units).

The continuous progression of the micelle morphologies from spherical to wormlike to
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branched configurations is a gradual as opposed to a discontinuous phase transition. The

wide variance in the micelle length distributions displayed in Fig. 8 indicates that a hetero-

geneous mixture of micelle shapes and sizes is possible at thermodynamic equilibrium. This

observation tallies with classic micelle models which theorise monodisperse size distributions

for spherical micelles and polydisperse mixtures for elongated structures. 59 It also explains

the gentle increase in the fraction of branched micelles displayed in Fig. 7d. Another more

subtle sign of this phenomenon can be deduced from the micelle curvature ratio parameter

α. In this framework, the micelles are worm-like as opposed to branched and therefore this

parameter must exceed one by definition. However, this value can be substantially less than

unity for branched topologies as evidenced in the plot. It follows that the salt concentration

where this parameter equals one can be construed as an approximate location for this phase

transition. This corresponds to a transition point between the third and fourth data point

in Fig. 7d.

5 Discussion

Although micelle length is known to be a key metric associated with structural changes

in rods and WLMs 60 there has been no obvious way to measure the length of WLMs.

For a cylinder, measuring the axis provides an obvious overall length. Analogously, for

WLMs we introduce the PL skeleton as a metric comparable to the axis of the cylinder,

while still permitting an easy determination of overall length (by the obvious addition of

the lengths of all the sub-segments). This skeleton is similar to the medial axis, 61–66 which

plays a prominent role in geometric topology algorithms for many engineering applications.

However, the approach here avoids the topological instability problem where small changes

in shape cause significant variations in the computed medial axis. 67 The effectiveness of this

length value as a metric is corroborated by the chemical simulations reported in the previous

section.
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Our procedure contains three parameters controlling spectral segmentation which were

introduced to avoid observed problem cases of data fitting and whose values were empirically

determined. The lower bound on the spectral gap, λmin avoids under-fitting while the upper

bound, λmax, and the maximum recursion limit, kmax avoid overfitting. In our simulated

experiments we found that a balance of these parameters was essential to maintaining good

performance. After tuning these parameters we still encountered cases in which spectral

segmentation alone failed. An additional repair and merge step was introduced to handle

these, which included branch points with high degree and the presence of cycles in the

skeleton graph.

The algorithm was designed from a geometric topology perspective with assumptions

made about the shape. We assume that the input graph is connected and represents a solid

object, with high connectivity in the interior. This assumption is vital to the effectiveness of

spectral segmentation as it allows the boundary and branch points to be clearly identified.

While our empirically determined parameter values work well in practice under these shape

assumptions, we hypothesize that these thresholds reflect basic structural characteristics of

the micelles and could be derived directly from a more careful chemical analysis.

Our topological algorithm can be successfully applied to convex micelle geometries,

WLMs and branched structures, however there are limitations to its range of applicabil-

ity. In particular, surfactant bilayer and vesicle micelles were not investigated in this study

and further work would be required to extend the mathematical framework such that it could

correctly characterise such point cloud configurations.

A key motivation for our algorithm is to accurately measure structural characteristics of

WLMs that could be used in conjunction with viscosity models to obtain further insight into

their rheological properties. For example, based on polymer physics concepts Boek and co-

workers developed a framework, MESOWORM, which models WLMs as a continuous string

of thin rods, similar to our derivation of a piecewise linear micelle backbone. 68–72 From this
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they derived an expression for the zero-shear viscosity, η0, of unentangled WLMs.69

η0 =
π√
6

cNkBT

N + 1

√
τlτ , (1)

where cN , N , τl and τ are the number of micelle backbone segments per unit volume,

number of micelle backbone segments per micelle, longest relaxation time if the WLMs were

unbreakable, and effective relaxation time. The first two of these, cN , N can be calculated

at each timestep directly from the application of the algorithm.

The longest relaxation time, τl, is given as:

τl =
ξb2(N + 1)2

3π2kBT
, (2)

Here b is the average micelle segment length which can be extracted from our algorithm. ξ

is the average friction on a segment and can be estimated as outlined in the literature. 69

The final parameter is the effective relaxation time τ . This is a function of τl (Eq. 2) and

τb, the characteristic breakage timescale, which equals 1/(kmL). Here L is the average micelle

length produced from our algorithm and km is the micelle breakage rate. Although km is

not measured by our algorithm, the fact it can measure end-caps allows us to detect their

formation, and thus provides an avenue for obtaining this value from the same simulations.

We note that the practical use of the above equations will require careful consideration

of finite-size effects and related calibration of the simulation box size. These effects directly

impact measurements of extrinsic properties like micelle length and can influence intrinsic

properties like micelle backbone segments per unit volume. In addition the growth of the

micelles may be inhibited by the finite number of surfactants initialised in the simulation

box. These issues will be investigated in more depth in future studies of surfactant rheology.

Finally the algorithm’s ability to detect micellar phase transitions (see Section 4) could be

useful from a theoretical and experimental perspective. Qualitatively, the onset of branching

makes additional stress relaxation modes available, 21 lowering viscosity and indicating that
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the salt concentration corresponding to a viscosity maximum has been passed. Importantly,

the onset of branching cannot be detected experimentally and our model could act as a

preliminary screening tool for narrowing down the position of the salt curve maximum, and

also help to delineate the bounds of applicability of theoretical viscosity models which cannot

be employed on branched WLMs.

6 Conclusion

The work presented here tailors techniques from computational geometric topology to address

the problem of measuring the length of worm-like micelles (WLMs) resulting in a novel

contribution to their analysis. The developed algorithm takes molecular point clouds as

input and produce clusters, as determined from the Fiedler vector of the discrete Laplacian,

to form piecewise linear (PL) skeletons, and to assign a comprehensive length to each WLM.

The new length metric allows calculation of micelle-curvature, discriminates worms from

rods, and extends directly to branched WLMs. In addition, the algorithm provides infor-

mation on other interesting characteristics of worms such as the number of end-caps and

branch-points, along with the micelle cross-sectional radius. Since a key motivation for

characterising WLMs is understanding their rheological behaviour we also discuss the the-

orized connections between the characteristics accessed by our algorithm and viscosity, and

show how the algorithm can provide input parameters for well-established mesoscopic WLM

viscosity models.

Importantly, the technique can be used to characterise WLMs produced by any particle

based simulation technique. Here we demonstrated the algorithm’s utility by applying it to

DPD simulations of the ion-induced micelle phase transitions of SDS, extracting a series of

geometric measures which describe the structural evolution of WLMs as salt concentration

is varied.
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8 Appendix: Coarse-Grained DPD Model

In this work we adopt the Dissipative Particle Dynamics (DPD) simulation approach in which

particles (referred to as DPD beads hereafter) interact via soft repulsions and with local

pairwise dissipative and random forces which work together as a thermostat. 42 We do not

repeat here details of what is now a standard simulation method. Rather, we point the reader

to chapter 17 of the textbook by Frenkel and Smit, 44 and the original DPD literature.41,42,73

An up-to-date perspective on the DPD methodology has been recently presented by Español

andWarren.43 In the DPD simulations carried out in this article we adopt the sodium dodecyl

sulphate (SDS) model developed by by Anderson et al.74,75 This model has been adopted

and extended by a number of groups to explore the behaviour of ionic surfactants. 76–79

In their approach each DPD bead represents between 1-3 "heavy" atoms (namely, oxygen,

carbon, sodium and chloride in this study). The coarse-grained SDS molecule is represented

by eight beads where one bead is the Na+ counter ion and is not bonded to the rest of the

surfactant. Water beads in the model are defined by a mapping number of Nm = 2, so that
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each water bead corresponds on average to two water molecules. 80 Following well-established

protocol,42 the density of water beads is set to ρr3c = 3 in reduced DPD units, where rc is

the above-mentioned cut-off distance. The mapping ρNmvm ≡ 1, where vm ≈ 30Å3 is the

molecular volume of liquid water, then gives rc ≈ 5.65Å in physical units. Na+ and Cl− beads

are each represented by a single bead and can be considered to be partially hydrated ions in

the model. Essentially, these ions are represented as positively and negatively charged water

beads in the model. This is a coarse approach to the consideration of charged species but

has proven to be effective in exploring the micelle behaviour of anionic surfactants, 9,75 and

theories on developing improved representations are only just emerging in the literature. 81

Full details of the model and adopted parameters are presented in the SI.

In this model a standard set of reduced units is adopted in which the beads have unit

mass, the system is governed by temperature kBT = 1 (equivalent to 298 K), and the baseline

cut-off distance for the short-range soft pairwise repulsion between solvent beads is set as

rc = 1. (Note that the model adopted allows deviations from this for non-solvent beads.)
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Algorithmic Theory

In the topological characterisation procedure we represent a micelle as a graphS1 associated

with a collection of points in R3. Formally, a graph is an an ordered pair of sets

G = (V,E),

where V is called the vertex set, with vertices, vi, and E is called the edge set with edges,

ei,j. Figure S1 shows a planar graph, with integers indicating vertices and line segments for

edges. We consider undirected graphs, so ei,j = ej,i.

6 5 1

4 2

3

Figure S1: Example of a graph with vertices labeled 1-6.

The degree di of a vertex vi is the number of edges in E containing vi. The degree matrix

of a graph with n vertices is the n× n diagonal matrix D such that

Dij =


di if i = j

0 otherwise.

The adjacency matrix of G is the n× n symmetric matrix A with entries

Aij =


1 if ei,j is an edge,

0 otherwise.

The graph Laplacian S1–S4 of a graph G is the n× n matrix L = D − A.
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In Figure S1 the vertex labeled with 1 has 2 edges and the degree of vertex 1 is 2, for

D =



0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0


A =



2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1


L =



2 −1 0 0 −1 0

−1 3 −1 0 −1 0

0 −1 2 −1 0 0

0 0 −1 3 −1 −1

−1 −1 0 −1 3 0

0 0 0 −1 0 1


.

A standard refinement of the Laplacian defined above which is often used to compare

matrices that are of varying size is the normalized symmetric Laplacian,S5 denoted as Lsym.

The adjustments are given by entries

Lsym
ij =



1 if i = j and di 6= 0,

− 1√
didj

if vi, vj is an edge

0 otherwise.

Throughout, we will denote the normalized laplacian Lsym by L.

Let λ0 ≤ λ1 ≤ . . . ≤ λn−1 denote the eigenvalues of L and wi ∈ Rn denote the eigenvector

corresponding to λi: that is, Lvi = λiwi. For a connected graph λ0 = 0 and λ1 is the spectral

gap which gives a measure of the connectedness of the graph. The eigenvector corresponding

to the smallest non-zero eigenvalue, w1 if the graph is connected, is known as the Fiedler

vector.S2,S6,S7 We will assume G is connected and denote f = w1 and λ = λ1 to simplify

notation.

Vertices will be denoted by vi for i = 1, . . . , n. Entries of f are denoted fi, for i = 1, . . . , n.

The graph G = (V,E) can be split into subgraphs G1 and G2 by partitioning V into

V1 = {vi ∈ V | fi < 0}, V2 = {vi ∈ V | fi ≥ 0},

S-3



and taking G1 and G2 as induced subgraphs of G.

Formally, a graph partition is the reduction of a graph G = (V,E) into a collection of

smaller graphs with H = (U,L) formed by partitioning its vertices V into mutually exclusive,

non-empty, vertex sets U = Vi, . . . , Vm. That is, each vertex of H is a subgraph Hi = (Vi, Ei)

such that Vi ∩ Vj = ∅ for all i 6= j and
⋃

i=1,...,n Vi = V with edges Ei consisting of edges in

G with both ends in Vi. The edges L of the graph partition are given by collections of edges

in the initial graph that cross between groups and will be referred to as links.

A single partition of the vertices a connected graph G = (V,E) into two groups V1 and

V2 gives a graph partition H = ({G1, G2}, {l}). The link l associating G1 and G2 is itself a

subgraph of G given by the collection of edges

El = {e = {vi, vj} ∈ E | fi < 0 and fj ≥ 0}

and the vertex set

Vl =
⋃
e∈El

e.

The process of repeatedly partitioning subgraphs split by this process will be referred to as

recursive spectral segmentation. Empirically, we will introduce a bound on the spectral gap

as a stopping condition for the recursion.

Molecular Beading

A total of three molecules, SDS, NaCl and water, are simulated in this study. The atomic

to DPD bead mapping is outlined in Table S1, while each water bead consists of two water

molecules. Similarly, a DPD NaCl molecule is composed of two unbound DPD beads: Na

and Cl. Both of these ions are denoted to be hydrated and consist of two atomic water

molecules along with the corresponding ionic atom.

The construction of the DPD SDS molecule is illustrated in Fig. S1. This linear molecule
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Table S1: Table mapping each DPD bead to its constituent atomic components.

DPD Bead Atoms Charge
H2O H4O2 0
Na NaH4O2 1
Cl ClH4O2 -1

CH2SO4 CH2SO4 -1
CH3 CH3 0

CH2CH2 C2H4 0

has a radial bond U(ri,j) between each neighbouring pair of beads i and j, as per Eq. 7.

Here κ is set to 150 and r0 is defined by the equation r0 = (ni + nj) − 0.01 where ni is the

number of ”heavy” (non-hydrogen) atoms per bead. The equilibrium bond angle U(θijk) is

set to 180 degrees for all angular bonds, along with a stiffness parameter κ set to 5.

Figure S2: Schematic of the beading structure of SDS.

Force Field Parameters

The force-field parameters employed in this study are displayed in Table S2.S8

Mathematical Derivations of Simulation Observables

The simulation observables which we computed in the study are as follows:

• The number-averaged micellar cross-sectional radius rcs.

• The number-averaged micelle backbone length lb.
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Table S2: Table of DPD interbead interaction parameters as per Eq. 2.

Bead i Bead j Aij rc
Cl Cl 25.00 1.00
Cl Na 25.00 1.00
Cl H2O 25.00 1.00
Cl CH3 45.00 0.98
Cl CH2SO4 25.00 1.00
Cl CH2CH2 45.00 1.04
Na Na 25.00 1.00
Na H2O 25.00 1.00
Na CH3 45.00 0.98
Na CH2SO4 17.90 1.12
Na CH2CH2 45.00 1.04
H2O H2O 25.00 1.00
H2O CH3 45.00 0.98
H2O CH2SO4 17.90 1.12
H2O CH2CH2 45.00 1.04
CH3 CH3 24.00 0.95
CH3 CH2SO4 28.50 1.09
CH3 CH2CH2 23.00 1.01

CH2SO4 CH2SO4 13.30 1.23
CH2SO4 CH2CH2 28.50 1.15
CH2CH2 CH2CH2 22.00 1.07
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• The weight-averaged micelle backbone length lwb.

• The number-averaged micelle end-to-end length lc.

• The number-averaged micelle size Ns.

• The weight-averaged micelle size Nws.

• The maximum micelle size Nmax.

• The number of micelles Nm.

• The number of branched micelles Nbm.

• The micelle curvature ratio α.

• The number-averaged end-caps per micelle Nend.

Structural Observables

The following structural observables were calculated directly from the simulation itself:

• The maximum micelle size Nmax.

• The number of micelles Nm.

• The number of branched micelles Nbm.
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The remaining structural observables were derived from direct observables (parameters which

the simulation measured at each time step).

rcs =
r1mcs

r0mcs

,

lnb =
l1mb

l0mb

,

lwb =
l2mb

l1mb

,

le =
l1me

l0me

,

Nns =
N1

ms

N0
ms

,

Nws =
N2

ms

N1
ms

,

α =
lnb
lc
,

Nend =
N1

end

N0
ms

.

(1)

Here rimcs, l
i
mb, l

i
me, N

i
ms, N

i
end signifies the ith moment of the micelle cross-sectional radius,

micelle backbone length, micelle end-to-end length, micelle size, micelle end-cap distribu-

tions, respectively.

Simulation Equilibration Protocol

A sliding window weighted linear-least squares (WLLS) procedure was applied to determine

the equilibration time (i.e. time after which a steady state value is achieved) of each measured

time series observable.S9 The equilibration point of the time series which converges slowest

to equilibrium is defined as the global equilibration point. The set of simulation frames

from this point until the end of the simulation was defined as the range of equilibrated

frames, and it was from this that the mean, correlation time and standard error of the

mean of each time series observable was calculated. Each simulation ran for 8 million time
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steps to ensure that the number of equilibrated frames exceeded at least six of the longest

observable autocorrelation timescales, and reliable statistics could be gathered.S10 A detailed

explanation of this protocol is beyond the scope of this paper and may be found in the

following reference.S9

References

(S1) Biggs, N.; Biggs, N. L.; Norman, B. Algebraic graph theory ; Cambridge university

press, 1993; Vol. 67.

(S2) Chung, F. R.; Graham, F. C. Spectral graph theory ; American Mathematical Soc.,

1997.

(S3) Levy, B. Laplace-beltrami eigenfunctions towards an algorithm that” understands”

geometry. IEEE International Conference on Shape Modeling and Applications 2006

(SMI’06). 2006; pp 13–13.

(S4) Zhang, H. Discrete combinatorial Laplacian operators for digital geometry processing.

Proceedings of SIAM Conference on Geometric Design and Computing. Nashboro

Press. 2004; pp 575–592.

(S5) Chen, H.; Zhang, F. Resistance distance and the normalized Laplacian spectrum.

Discrete Applied Mathematics 2007, 155, 654–661.

(S6) Hoffman, K.; Kunze, R. Linear algebra. 1971. Englewood Cliffs, New Jersey

(S7) Strang, G. Linear Algebra and Its Applications, (1988). Hartcourt Brace Jovanovich

College Publishers 1988,

S-9



(S8) Anderson, R. L.; Bray, D. J.; Del Regno, A.; Seaton, M. A.; Ferrante, A. S.; War-

ren, P. B. Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle

Dynamics. Journal of Chemical Theory and Computation 2018, 14, 2633–2643.

(S9) Johnston, M. A.; Swope, W. C.; Jordan, K. E.; Warren, P. B.; Noro, M. G.; Bray, D. J.;

Anderson, R. L. Toward a Standard Protocol for Micelle Simulation. J. Phys. Chem.

B 2016, 120, 6337–6351.

(S10) Chodera, J. D. A Simple Method for Automated Equilibration Detection in Molecu-

lar Simulations. Journal of Chemical Theory and Computation 2016, 12, 1799–1805,

PMID: 26771390.

S-10


	Introduction
	Characterisation of Micelle Topology
	Algorithmic Design
	Spectral Splits
	Implementation
	Segmentation
	Skeletonization
	Estimating the Full Length
	Skeleton Repair
	Estimating a Cross-sectional Radius


	Simulation Protocol
	Micelle Identification and Characterisation

	Test Case: SDS Micelle Properties in the Presence of NaCl
	Discussion
	Conclusion
	Acknowledgements
	Appendix: Coarse-Grained DPD Model

