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Abstract. We introduce series-triangular graph embeddings and show how to partition

point sets with them. This result is then used to prove an upper bound on the number

of Steiner points needed to obtain compatible triangulations of point sets. The problem is

generalized to finding compatible triangulations for more than two point sets and we show

that such triangulations can be constructed with only a linear number of Steiner points added

to each point set. Moreover, the compatible triangulations constructed by these methods

are regular triangulations.

1. Introduction

Given two n point sets in general position in the plane, it is an open question as to whether

compatible triangulations always exist between them. This problem was first posed by Aich-

holzer et al. [1] in 2002 and in a slightly different version by Saalfeld [6] in 1987. Aronov, Seidel,

and Souvaine [2] studied the related problem of compatibly triangulating simple polygons and

showed that Ω(n2) Steiner points were necessary in some cases. An immediate corollary of

Euler’s Theorem states that the number of triangles in any triangulation of a set S with n

points is 2n − 2 − h, where h is the number of extreme points. Trivially, two triangulations

must have the same number of triangles to be compatible so it is a necessary condition for a

compatible triangulation that the point sets have the same number of extreme points. Aich-

holzer et al. conjecture that this condition is also sufficient. They also show that compatible

triangulations, for sets obeying these necessary conditions, are always possible if one is allowed

to add extra points, called Steiner points, to the sets. The number of Steiner points required

by Aichholzer et al. is equal to the number of interior points of the set minus three.

In this paper, a new method is proposed for obtaining compatible triangulations using Steiner

points by allowing the addition of points both inside and outside the convex hull. This method

requires the use of a number of Steiner points approximately equal to half the number of points

in the set. We require that the points placed outside the convex hull be close to the convex hull.

This variant on the problem is quite natural, extending the domain of problem instances to

include sets for which the number of extreme points in the two sets are not equal. The method

also allows for control over the structure of the Steiner point triangulation. In particular, the

Steiner points and the edges between them form a weighted Delaunay triangulation, also known

as a regular triangulation.
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The problem of finding d-way compatible triangulations was considered by Krasser [5]. This

natural generalization of the problem asks how d distinct point sets can be triangulated so that

the resulting triangulations are pairwise compatible. In [5], it is shown that for d > 2, there

exist d sets of n points which do not admit d-way compatible triangulations. It follows that the

addition of Steiner points is necessary in order to yield a compatible triangulation. We extend

our Steiner point method for the d = 2 case to produce a technique for d-way compatible

triangulation using a number of added points to each set which is independent of d.

Acknowledgments. We are grateful to the NSF for partially supporting this project with grants

DMS-0353634 and CARGO DMS-0310354. We also thank John Mugno and Rachel Ward for

helpful discussions, along with the referees for their thorough critique.

2. Steiner Points

2.1. A triangulation of a set S of points in the plane R
2, denoted by τS , is a maximal set of line

segments between the points such that any pair of segments intersect at a common endpoint

or not at all. When we refer to the triangles in a triangulation, we mean the empty triangles,

those that do not contain any other points of S. This paper will only consider point sets S in

general position, where no three points of S are collinear.

Let CH(S) denote the vertices of the polygonal boundary of the convex hull of S under

a cyclic ordering. The orientation of CH(S) refers to whether this ordering is clockwise or

counterclockwise around the polygon. The set of points in CH(S) are called the extreme

points, and the remaining points of S are called interior points.

Definition 1. Given two point sets S and T with |S| = |T |, along with triangulations τS and

τT , we say τS and τT are compatible if there exists a bijection f : S → T such that 4(a, b, c)

is a clockwise-oriented triangle of τS if and only if 4(f(a), f(b), f(c)) is a clockwise-oriented

triangle of τT .

Figure 1 gives an example of compatible triangulations. There are variants of this definition

which omit the requirement regarding orientation, requiring only that the bijection maps empty

triangles to empty triangles. We have chosen the above definition because it is more useful for

applications in computer graphics and cartography. It is important to note that none of these

definitions require only the underlying graph structures of the triangulations to be isomorphic.

However, we give a definition equivalent to Definition 1 in terms of the graph structure of the

triangulations.

Definition 2. Given two point sets S and T along with triangulations τS and τT , we say τS

and τT are compatible if the there exists an isomorphism between their underlying graphs that

also maps CH(S) to CH(T ) preserving their orientation in the plane.

2.2. The problem of finding compatible triangulations can be made easier if we can add extra

points to the point sets, called Steiner points. Steiner points placed inside (outside) the convex
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Figure 1. Example of compatible triangulations.

hull of a point set are named interior (exterior) Steiner points. Aichholzer et al. [1] give a

method of compatibly triangulating two point sets with the introduction of a number of interior

Steiner points equal to the number of interior points minus three. One might try methods of

compatible triangulation using exterior Steiner points, that is, additional points added outside

of the convex hull of the original point set. We start by showing a method of doing this that

uses a number of Steiner points independent of the size of the point sets to be triangulated.

Theorem 3. Given two point sets S and T with |S| = |T | = n, then S and T may be compatibly

triangulated with the addition of two Steiner points to each set.

Proof. Order each set in terms of increasing second coordinate, and when points have the same

second coordinate, order them in terms of decreasing first coordinate . Explicitly,

S = { p1 = (x1, y1), · · · , pn = (xn, yn) }

where if i > j, then either yi > yj or yi = yj and xi < xj . Similarly,

T = { q1 = (u1, v1), · · · , qn = (un, vn) }

where if i > j, then either vi > vj or vi = vj and ui < uj . Add a Steiner point pL slightly

below p1 and far enough to the left of S so that edges pipi+1 (between consecutive points of

S) and pLpi (between pL and points of S) do not intersect pairwise. Similarly, add a Steiner

point pR slightly above pn and to the right of S with the corresponding property; see Figure 2.

Note that pL and pR exist since placing them arbitrarily far away yields edges arbitrarily close

to horizontal. Add qL and qR to T in the same manner.

Let S∗ = S ∪ {pL, pR} and T∗ = T ∪ {qL, qR}. By construction, the edges pLpi and pipR

(connecting each Steiner point to every point of the original set) together with the edges pipi+1

yield a triangulation of S∗; a similar construction gives a triangulation to T∗. The bijection

f(p∗) = q∗ shows these triangulations to be compatible. �

The preceding theorem demonstrates the power of adding exterior Steiner points. The

downside is that the new Steiner points can be arbitrarily far away; a better solution would

bound the maximum distance between points. The radius of a point set S, denoted by r(S), is
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Figure 2. Example of sufficiency of two exterior Steiner points.

the radius of the smallest disk that contains all of S (and thus the convex hull of S). We want to

bound the impact of placing points outside the convex hull, and so we employ this definition of

radius since it is an approximate measure of the size of the convex hull of a point set in R
2. In

Section 4, we present a method of compatibly triangulating point sets where the Steiner points

increase the radius of the point set at most by a constant factor.

3. Partitioning point sets with series-triangular graph embeddings

3.1. In order to construct compatible Steiner point triangulations, it is helpful to break the

problem into smaller pieces. One way is to lay down the Steiner points so that a triangulation

of the Steiner points alone divides the original point sets into smaller point sets in each triangle.

This only works if the triangulations on the Steiner points are compatible and the same number

of points fall in corresponding triangles. In this section we show this is always possible.

Recall that Definition 2 states that compatibility is just an extreme point preserving isomor-

phism. Therefore, in order to add Steiner points that can be compatibly triangulated, we view

these triangulations as two embeddings of the same graph in which the same vertices map to

the extreme points in the same orientation. The graphs used to perform this desired partition

all have a common structure.

Definition 4. A graph G(V,E) is series-triangular if

(1) it is planar,

(2) every embedding of G in R
2 is a triangulation, and

(3) when |V | > 3, there is a vertex v in V such that G \ v is series-triangular.

Figure 3 shows the construction of a series triangular graph, starting with a triangle, one

vertex at a time. The recursive definition above implies that there is a labeling v1, . . . , vn of the

vertices of G such that the subgraph Gi induced on {v1, . . . , vi} is series-triangular for i ≥ 3; this

is called an ordered labeling. In particular, if an ordered labeling is given, then it is possible to
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embedG in R
2 so that {v1, v2, v3} map to extreme points oriented clockwise. An embedding that

satisfies this property is called an ordered embedding. An immediate consequence of Definition 2

is the following useful lemma.

Figure 3. Constructing series-triangular graphs one vertex at a time.

Lemma 5. Let φ, ψ be straight-line embeddings of a series-triangular graph G. Then φ(G)

and ψ(G) are compatible triangulations under the bijection f(φ(v)) = ψ(v) if and only if φ and

ψ map the same vertices of G to extreme points in the embedded triangulations with the same

orientation.

In other words, for a given ordered labeling of the vertices of G, all ordered embeddings are

compatible. Thus, once an ordered labeling for G (there are many) is chosen, the compatibility

class of the ordered embedding is fixed. In what follows, we always assume an ordered labeling

is given with G and refer to the triangles in an ordered embedding of G as simply the triangles

of G.

3.2. As series-triangular graph embeddings are used to construct compatible Steiner point

triangulations, it is natural to desire also that the triangulations being constructing have a nice

structure. The following gives such a result.

Lemma 6. A straight-line embedding of a series-triangular graph is a regular triangulation.

Proof. Recall that a triangulation τ of a point set S in R
2 is regular if it is the projection of the

lower convex hull of a polytope in R
3. We construct such a polytope by inductively defining

a height function h : S → R. Order the points of S = {x1, . . . , xn} such that τ is the ordered

embedding. Let S′ = {(xi, h(xi))} be the vertices of the convex polytope P in R
3, and let Pi

be polytope at the i-th step, the convex hull of the first i points in S ′. As a base case, since

a single triangle is always regular, set x1 = x2 = x3 = 1. For each xi, let 4(xa, xb, xc) be

the triangle that is trisected by xi. Pick z so the point (xi, z) ∈ R
3 lies on the plane passing

through 4(xa, xb, xc). Then we can choose ε small enough such that setting h(xi) = z − ε

places (xi, h(xi)) close enough to the surface of Pi, where the only new triangles added to the

convex hull are exactly those that trisect 4(xa, xb, xc). By induction, the entire height function

can be constructed. �
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3.3. Before analyzing issues with series-triangular graphs, we first examine the partition of

point sets within a single triangle.

Definition 7. Let p be an interior point of a triangle T in R
2. The three lines passing through

p and each vertex of T subdivides T into six triangles. The trisection of T at p is obtained

from the three line segments from each vertex of T to p. The three halflines emanating from p

directed away from the three vertices of T give the Y-section of T at p, denoted as Y (p); see

Figure 4.

( b ) ( c )( a )

Figure 4. (a) Subdivision, (b) trisection, and (c) Y-section of a triangle.

If a Steiner point d is placed inside T , the trisection of T at d divides T into three adjacent

triangles. Ideally, we would like to have the freedom to place d in such a way that the number

of points in each of the triangles of the trisection is prescribed. The following shows this is

always possible.

Lemma 8. Let S = {p1, . . . , pn} be a set of points inside a triangle T = 4(a, b, c) satisfying

the following conditions:

(1) The points S ∪ {a, b, c} are in general position.

(2) If A is the arrangement of all lines passing through pairs of points (t, s) where t ∈

{a, b, c} and s ∈ S then the lines of A have no three-way intersection inside T .

Then the set Y (p1) ∪ · · · ∪ Y (pn) divides T into
(

n+2
2

)

regions.

Proof. We construct this inductively, starting with T and adding a point of S at each step. It

is clear from the definition that every pair of distinct Y -sections intersect at exactly one point.

It follows from the assumption that no three Y -sections intersect at a point. Thus, k distinct

Y -sections result in k − 1 intersections. Each additional Y -section divides the region of its

center point into three parts and divides each of the k− 1 other regions into two parts, one for

each line crossed; Figure 5 shows some examples. Thus
∑

(i+ 1) =
(

n+2
2

)

is the total number

of regions for n points. �

We also need the following lemma, which is a special case of a theorem by Garćıa and Tejel [4].

Lemma 9. Let S = {p1, . . . , pn} be a set of points inside a triangle T satisfying the conditions

of Lemma 8. Let x, y, z be positive integers such that x + y + z = n. A Steiner point d can

be placed in T such that the three triangles formed by the trisection of T at d contain x, y, z

interior points respectively.
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Figure 5. The Y-sections of (a) one, (b) two and (c) three points.

3.4. We now show how a series-triangular graph can be embedded in the plane so that the

triangular faces of the embedding partition a set of points nicely.

Theorem 10. Let S be an n point set in R
2 and G(V,E) be a series-triangular graph, and let

k be odd. If {t1, . . . , tk} are the triangles of G and n1 + · · · + nk is a partition of n, then there

is an ordered embedding φ(G) with the property that exactly ni points of S lie in the triangle ti.

Proof. We construct φ by induction on |V | = k+5
2

. The base case when |V | = 3 and k = 1

is trivial because any triangle enclosing all of S suffices. We choose this triangle so that it

satisfies the conditions of Lemma 8. Now, assume k ≥ 3 and let n′ = nk−2 + nk−1 + nk. As G

is series-triangular, let v be the vertex such that when removed along with all edges touching

it, the resulting graph, called G′, is series-triangular. Since G′ has one less vertex and two less

triangles, by induction we can find an embedding φ′(G′) such that n1, n2, . . . , nk−3, n
′ points of

S lie in the respective triangles t′1, t
′

2, . . . , t
′

k−3, t
′

k−2 of φ′(G′). Further assume by induction that

so far the conditions of Lemma 8 are met. Now, Lemma 9 ensures that there is a non-empty

open region inside t′k−2, any point of which, when connected to the vertices of t′k−2, will divide

the triangle into three smaller triangles having exactly nk−2, nk−1 and nk of the n′ points of

t′k−2 ∩ S. From this region we may pick a point p so that when we define φ by extending φ′ to

include φ(v) = p, the conditions of Lemma 8 are satisfied. The three new triangles formed by

the addition of φ(v) are the triangles tk−2, tk−1, tk of the embedding φ(G). �

In a sense, this construction stretches the triangulation over the point set controlling how many

points land in each triangle. It is not hard to see that this partitioning theorem can be modified

so that the number of points in the unbounded face can also be specified.

4. Compatible Steiner point triangulations

4.1. We will now show that the partitioning theorem in the previous section can be used to

triangulate point sets with Steiner points. This method will embed a series-triangular graph

around each point set, partitioning them so each triangle receives one point. The new points

introduced will be the Steiner points and the compatible triangulations of those points will be

extended to compatible triangulations of the entire point set.

A partition of points by a series-triangular graph embedding encloses the entire point set

in a triangle. The smallest triangle containing the disk of radius r(S) has radius 2r(S), so
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the radius of the point set increases at most by a factor of 2 by adding the points needed to

partition it.

Theorem 11. Given point sets S, T with |S| = |T | = n, it is possible to compatibly triangulate

S and T with the addition of at most n
2

+ 3 Steiner points such that the radii of the point sets

increase at most by a factor of 2.

Proof. Let G be any series-triangular graph with at least n bounded triangles. Use Theorem 10

to obtain an ordered embedding of G in R
2 so that no two points of S share a triangle; repeat

this process for T . By Lemma 5, the embeddings are compatible triangulations. Choose the

partitions so that compatible triangles contain the same number of vertices (0 or 1 in this

case). Because each pair of compatible triangles admit compatible triangulations of the interior

points, these triangulations are easily extended to compatible triangulations of the entire point

sets. Since any planar triangulation on k vertices has 2k − 5 bounded triangles, we can choose

G such that |V | = dn+5
2

e < n
2

+ 3. �

Remark. In light of Lemma 6, the triangulations constructed above are regular.

4.2. Aichholzer et al. [1] show that for point sets with only three interior points, there exists

compatible triangulations as long as the point sets have the same number of extreme points.

Moreover, this result holds even if the bijection between their extreme points is prescribed

by cyclic rotation. An immediate consequence of this fact is that the proof of the preceding

theorem can be modified to place three points in each triangle rather than one. Thus we get

the following:

Corollary 12. Given point sets S, T with |S| = |T | = n, it is possible to compatibly triangulate

S and T with the addition of at most n
6

+ 3 Steiner points such that the radii of the point sets

increase at most by a factor of 2.

Computer simulations in [1] have shown that all sets of 9 points with the same number of

extreme points yield compatible triangulations even if the bijection between the extreme points

is fixed by cyclic rotation. Thus, this result can again be refined by placing 6 points in each

triangle.

Corollary 13. Given point sets S, T with |S| = |T | = n, it is possible to compatibly triangulate

S and T with the addition of at most n
12

+ 3 Steiner points such that the radii of the point sets

increase at most by a factor of 2.

These corollaries demonstrate the expandability of the series-triangular partition method.

As larger point sets are shown to yield compatible triangulations with extreme points prescribed

by cyclic rotation, the number of Steiner points needed to compatibly triangulate goes down.

Our methods give a framework for directly extending results on small point sets to arbitrary

point sets.
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5. d-way Compatible Triangulations

5.1. We apply our methods to a more general question posed by Krasser in [5], where there

are not just two but d point sets S1, . . . , Sd. Thus, instead of a single bijection, a set of

bijections f1, . . . , fd−1 are needed with fi : Si → Si+1 mapping triangulations to triangulations

compatibly. An important application of compatible triangulations comes from the problem of

morphing computer graphics. Surazzhsky and Gotsman [7] show that if a pair of compatible

triangulations are given, then it is possible to linearly morph one into the other without any

triangle edges intersecting. Suppose one desires to morph a triangulated point set S1 to a

point set S2 and then again to third point set S3 and so on to Sd. In such a case, d-way

compatible triangulation are necessary. Indeed, previous methods for finding compatible Steiner

triangulations would require adding new Steiner points for each morph thus making the number

of Steiner points dependent on d. However, it is shown below that our method for compatible

Steiner triangulation of two point sets extends to d-way compatible triangulations so that the

number of Steiner points added to each set stays linear and is independent of d.

Definition 14. Given point sets S1, . . . , Sd, with |Si| = |Sj | for all i, j, and triangulations

τ1, . . . , τd, then {τ1, . . . , τd} is d-way compatible if τi and τj are compatible for all i, j.

As stated earlier, it is not known whether Steiner points are necessary for a compatible

triangulation of two point sets. The open conjecture is that the compatible triangulations

always exist when the point sets are the same size and have the same number of extreme

points. The corresponding conjecture for d-way compatible triangulation is false even for the

case when d = 3; see [5] for a counterexample.

5.2. Even in simple cases, Steiner points are necessary for d-way compatible triangulations.

We show the number of Steiner points needed for each point set to be independent of d.

Theorem 15. Given point sets S1, . . . , Sd with |Si| = n, it is possible to d-way compatibly

triangulate S1, . . . , Sd with the addition of at most n
2

+ 3 Steiner points to each set such that

the radii of the point sets increase by at most a factor of 2.

Proof. Construct any series-triangular graph G(V,E) with at least n triangles. By Theorem 10,

it is possible to embed G in R
2 for each Si so that one point of Si falls in each triangle. There

may be one empty triangle if n is even but this is inconsequential as long as we choose the same

triangle to remain empty in every embedding. All d embeddings φ1, . . . , φd are compatible by

Lemma 5.

Let {t1, . . . , tn} be the triangles of G. For each p ∈ Si and q ∈ Si+1, let fi(p) = q if and only

if p is inside triangle φi(tj) and q in φi+1(tj) for some j. Extend the bijections to include the

Steiner points by letting fi(φi(v)) = φi+1(v). All remaining edges are forced and compatible;

they are simply the edges connecting each point in the original sets to the three vertices of

the triangle that encloses it. As in the proof of Theorem 11, one can construct G so that
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|V | ≤ n
2

+ 3. The Steiner points for each point set Si are φi(V ); thus the number of Steiner

points required for each set is also at most n
2

+ 3. �

( b ) ( c )( a )

Figure 6. Three point sets in Steiner point triangles and their forced edges.

Unlike the case where d = 2, it is not possible to extend this method by placing more points

inside each triangle of the embedded graph. We note that if even two points go into any one

triangle, it may be impossible to the extend the compatible triangulation of the Steiner points

to a compatible triangulation of the entire points sets. Figure 6 gives a simple example where

this is the case. Note that at least one of the extreme points must have degree three; this

is not possible however since each of the extreme points has four forced edges in at least one

embedding.

References

1. O. Aichholzer, F. Aurenhammer, F. Hurtado, and H. Krasser. Towards compatible triangulations.

Theoretical Computer Science. 296 (2003), 3-13. Special Issue.

2. B. Aronov, R. Seidel, and D. Souvaine. On compatible triangulations of simple polygons. Computational

Geometry Theory and Applications. 3 (1993), 27–35.

3. T.K. Dey, M.B. Dillencourt, S.K. Ghosh, J.M. Cahill. Triangulating with high connectivity. Computa-

tional Geometry Theory and Applications. 8 (1997), 39-56.
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