
SHAPE DEFORMATION IN CONTINUOUS MAP GENERALIZATION

JEFF DANCIGER, SATYAN L. DEVADOSS, JOHN MUGNO, DON SHEEHY, AND RACHEL WARD

Abstract. Given a collection of regions on a map, we seek a method of continuously altering the regions
as the scale is varied. This is formalized and brought to rigor as well-defined problems in homotopic
deformation. We ask the regions to preserve topology, area-ratios, and relative position as they change over
time. A solution is presented using differential methods and computational geometric techniques. Most
notably, an application of this method is used to provide an algorithm to obtain cartograms.

1. Introduction

Cartographic generalization strives to represent geographical information on a map whose specifications

are different from those of the original dataset. The ubiquitous use of computers to handle geographic infor-

mation has led to the call for automation in map generalization. This demand has been further strengthened

by the prevalence of the internet, with its access to map-based websites. Based on pre-generalized datasets,

such sites allow users to zoom in and out of regions of maps at certain predetermined levels. Thus, most

approaches to this problem have been discrete in nature, with several transitional jumps from one scaling to

the next, with operators performing local changes to accomplish the generalization task. It is natural to de-

mand the ability to change the level of detail on such systems in a smooth fashion, rather than the discrete

jumps which often portray the current approach. This introduces the notion of continuous cartographic

generalization.

The interest in this field has started to grow over the past decade; Jones and Ware [7] furnish a nice

overview. Yang and Gold [16] provide a systems approach to automated map generalization. Issues and

algorithms with regards to area partitioning during continuous generalization using hierarchical schemes

is studied by van Oosterom [14]; van Kreveld [13] presents concepts in visualization which minimize the

discrepancy that occurs when discrete changes are made. Recently, Sester and Brenner [11] offer a possible

solution to continuous generalization when restricted to small mobile devices.

The ideas behind generalization, without even introducing a continuous parameter, are quite complex.

They involve numerous operations such as simplification, exaggeration, elimination, and displacement, along

with several issues such as features, label placements, and line thickness. A considerable amount of effort has

been exerted in the GIS community in this area, making it overly ambitious to discuss the full scope of this

multi-faceted problem. Indeed, the problems surrounding the subject of scale change itself is quite difficult

and involved; a pleasant survey is supplied by Lam et al. [8]. Our interest is restricted to one particular

aspect of this, notably shape.

This paper focuses on the deformation of the shapes of regions in a map during the process of continuous

scale change. The scale change transformation is given in the language of continuous, rather than discrete

mathematics. There are three key objectives for this work:
1
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(1) We model certain issues concerning shape in generalization from a mathematical viewpoint. In

particular, we extract properties of the map that are valuable such as area-ratios, topology and

adjacency, and recast it in a rigorous setting.

(2) We extend these ideas to address certain problems of shape deformation in continuous scale change

using homotopic tools. In particular, a treatment of continuous, multi-scale representation of spatial

data is given.

(3) We supply solutions to the problems, giving theoretical proofs of the results, as well as providing

some algorithmic solutions.

One can argue that discrete models which are classically used in GIS should also be sufficient for continuous

scale change. We do not oppose such a view; indeed, most of spatial data is stored in discrete databases.

However, one purpose of this work is to introduce new approaches and new tools which could possibly pave

the way for novel approaches to this difficult topic. The strength of theoretical mathematics lies in the

continuous language, and we present a means of harnessing part of it in this context.

2. Deformations using Functions

2.1. As our starting point, we choose and fix one largest-scale map drawing Ω at some scale s. This map

has several regions drawn on it. During the deformation which takes place as scale continuously changes, the

regions which are within Ω will expand and take available map space while satisfying certain requirements;

Saalfeld [10] presents a nice discussion of issues in such map space management. For scaling values near s,

there is a large amount of map space available for the regions to occupy; as the scaling decreases, the regions

grow, using up the surrounding map space. It is clear the shape of the regions will radically deform during

scale change; our goal is to understand how these regions within Ω will deform. Before proceeding further,

we need to properly define the objects of study. We note that almost all of the mathematics background

needed can be found in a standard topology text such as Hatcher [5].

Definition. A region is a connected subset of the plane bounded by a closed curve which does not intersect

itself.

In other words, a region is a generalization of the notion of a polygon. We choose and fix some region Ω at

some scale which contains a collection of pairwise disjoint regions {R1, R2, . . . , Rn} within it. Figure 1(a)

shows an example, where the base region Ω is the square, with the three regions A, B, and C contained

within Ω. In order to present a rigorous, unified approach, a novel method is introduced to study the regions.

Let R denote the union of the regions R1 ∪· · · ∪Rn. Then, the set R in Ω can be considered as the image

of a continuous function φ : R → Ω which maps each point x in R to its corresponding point φ(x) in Ω. The

function φ is called the inclusion function (it is sometimes called the identity function since it does not alter

the image of R.) Figure 1(b) shows the mapping of the example given in part (a). Under this language, we

claim that scale changes correspond to appropriate choices of continuous functions f : R → Ω. Figure 1(c)

shows another continuous function which has deformed the images f(R) of the regions R within Ω. To do

this correctly, however, we must have our functions f : R → Ω satisfy certain properties.

Remark. The key advantage to this set-up is that the original regions R are not altered during the defor-

mation, only their images under the functions. Thus, one can keep track of any collection of points in R
throughout the deformation by simply tracking their images.
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Figure 1. (a) The base region Ω is the square containing the three regions R = A∪B ∪C.
(b) The inclusion function φ taking R to their corresponding images. (c) A continuous
function deforming the regions R within Ω.

Notation. We use the symbol ∂ to denote the boundary of an object. Let Si = ∂Ri be the boundary curve

of region Ri, and let S denotes the union of all the curves {Si}. Moreover, let S∂ = S ∪ ∂Ω.

Definition. The function f : R → Ω preserves topology if f(Ri \ Si) is disjoint from f(Rj \ Sj) for all i, j.

In other words, regions are allowed to meet along their boundary but not within their interior.

Definition. The function f : R → Ω is area-ratio preserving if for all i, j,

µ(f(Ri)) · µ(Rj) = µ(f(Rj)) · µ(Ri),

where µ( · ) denotes the area of the region.

2.2. The properties above each have the aim of preserving certain features of the original set of regions

during scale changes. A final property we impose is to maintain the relative position of regions. Here,

regions that are “close” to begin with are expected to remain close after the transformation. A natural tool

to encapsulate this is the Voronoi diagram; the reader can turn to [9] for details. The Voronoi region Vi of

Ri is the set of all points which are closer (or equally close) to Si than to S∂ \ Si; in other words,

(2.1) Vi = {x ∈ Ω | dist(x, Si) ≤ dist(x, S∂ \ Si)}.

The boundaries of the Voronoi regions consist of Voronoi edges (equidistant from two regions) and Voronoi

vertices (equidistant from three or more regions). The Voronoi diagram of R in Ω is the union of the

boundaries of the Voronoi regions. The Voronoi diagram partitions Ω into connected regions, one for each

region Ri, and one associated to the boundary curve ∂Ω.

Definition. The adjacency graph Gf of the function f : R → Ω is the dual graph to the Voronoi diagram

of f(R) in Ω: Each Voronoi region is associated to a vertex of Gf , where two such vertices share an edge in

the adjacency graph if and only if they share a Voronoi edge.

Figure 2 shows (a) a map with five regions, along with (b) its six Voronoi regions and (c) the corresponding

adjacency graph.
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Figure 2. Voronoi regions and relative positions.

Definition. The function f : R → Ω preserves relative position if the canonical function Gφ → Gf taking

the vertex φ(Ri) to the vertex f(Ri) has the property that {φ(Ri), φ(Rj)} is an edge of Gφ if and only if

{f(Ri), f(Rj)} is an edge of Gf .

Consequently, if two regions are close to each other under the inclusion function φ, then they must be close

to each other under any scale change defined by some function f .

Definition. A continuous function f : R → Ω which preserves topology, area-ratios and relative position is

called a scaling function of φ.

3. A Homotopic Approach

Under a scaling function f , it is clear that the image of the regions R can cover no more than the entire

base region Ω. Thus, there is a natural limit to how much scaling of the regions is possible within a given

base Ω; these limiting scales are called end-states:

Definition. A scaling function f : R → Ω is an end-state if f(R) = Ω.

Remark. The purpose of introducing end-states is for a complete description of the problem. Indeed, it is

not intended to represent importance in mapping in its own right.

By abuse of terminology, we sometimes refer to the partition {f(Ri)} of Ω as the end-state. Figure 3(a)

shows the original regions, and a possible end-state is given in (c). So far we have spoken of individual
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Figure 3. An intermediate deformation step between initial and end-states.

functions f which are meant to depict scale changes. It is desirable to be able to enlarge the regions by any

amount provided the regions still fit within Ω. That is, we require a homotopy connecting the original state

(given by the inclusion function) with an end-state (with the regions filling the base region).
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Definition. Let X and Y be topological spaces. A homotopy between two continuous functions g1 : X → Y

and g2 : X → Y is a continuous function r : X × [0, 1] → Y from the product of the space X with the unit

interval [0, 1] to Y , where r(x, 0) = g1(x) and r(x, 1) = g2(x) for all points x in X .

r 

Figure 4. Homotopic deformation of two regions over time.

We can view r as a continuous deformation of the function g1 to the function g2. Alternatively, one may

regard the image g1(X) as being continuously transformed into the image g2(X) over some parameter varying

in [0, 1]. Figure 4 shows such a deformation, where three particular generalizations of the map are shown

in detail to the right. In our setting, we set X = R and Y = Ω, where g1 is the inclusion function φ and g2

is an end-state. By viewing the second parameter of r as a scaling value s ranging within the interval [0, 1],

r describes a continuous deformation of φ into an end-state. Consequently, as the scaling s increases from 0

to 1, the images of R grow within Ω, using up the surrounding map space, until all of Ω is filled.

Remark. It is vital to note that the scale values of the actual map do not vary from 0 to 1; the value s is

but a parameter which keeps track of the actual scales. So if one desires to calculate the evolution of maps

from some scale value a to scale value b, we reparametrize these values to range from 0 to 1. Thus, the unit

interval [0, 1] is simply used for the sake of consistency.

We are now in position to pose the fundamental problem from a mathematical context.

Problem. Let R be a collection of pairwise disjoint regions inside a map Ω given by an inclusion function

φ : R → Ω. Construct a homotopy r : R× [0, 1] → Ω having the following properties:

(1) r( · , 0) is the inclusion function φ.

(2) r( · , s) is a scaling function for all values s in the interval (0, 1).

(3) r( · , 1) is an end-state.

Figure 3 shows a possible sequence of homotopic deformation.
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4. An Equation of Motion

4.1. Our main tool in understanding the adjacency of regions so far has been the Voronoi diagram. Now

the medial axis is introduced, a finer tool which is used to extract more topological information; see [4] for

more details.

Definition. The medial axis M of the regions R in Ω is the closure of the set of points in Ω that have more

than one closest point in S∂ . The outer medial axis Mo is M∩Rc. The inner medial axis Mi of the region

Ri is M∩ Ri.

Figure 5(a) shows two regions in Ω with part (b) showing the Voronoi diagram of the regions in dashed

lines. Figure 5(c) displays the outer medial axis Mo and (d) shows the inner medial axes Mi in the interior

of each region. Notice that the Voronoi diagram is a subset of the outer medial axis. Indeed, whereas the

Voronoi diagram only measures the shape between two distinct regions, the medial axis also measures shape

deformations between a region and itself.

( a ) ( c ) ( d )( b )

Figure 5. (a) Regions along with the (b) Voronoi diagram, (c) outer medial axis, and (d)
inner medial axes.

A geometric approach towards a solution of the central problem is proposed below. In using a geometric

rather than combinatorial approach, we require that all the curves S∂ be differentiable. Roughly, this

procedure assigns a velocity vector to the points on the boundary of each region at every instant. The

velocity is the sum of three terms: one which points outward from Si (contributing a net increase in the

area of Ri), one which points inward (contributing a net decrease), and a compensation factor to maintain

relative position with adjacent regions. We now show how to obtain these velocity vectors at each scale level.

Growth Outward: Figure 6(a) displays a region Ri and part of the outer medial axis Mo (the dashed

line). For each point x in Si, let n̂ be its outward directed unit normal. Let u(x) be the first point of

intersection between the ray emanating from x in the n̂ direction and Mo. Note that u(x) is the center of

the unique medial ball whose boundary contains x, as depicted in Figure 6(b). Assign a vector vgrow(x)

of length ‖u(x) − x‖ to each point x on Si, as shown in part (c).1 Finally, uniformly rescale each of these

vectors over the entire curve Si so that the total growth value adds to 1; that is,∫
x∈Si

vgrow(x) · n̂ dc = 1.

Part (d) shows the vectors after the rescaling.

1This function might be non-differentiable at a few places, and thus needs to be replaced by an arbitrarily close differentiable
one. Geometrically, this can be viewed as smoothing of the corners of the medial axis.
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( c ) ( d )( b )( a )

Figure 6. Assignment of the vgrow(x) velocity vectors.

Shrink Inward: Consider Figure 7(a) showing the region Ri along with its inner medial axis Mi. For

each point x in Si, let u(x) be the unique point on inner medial axis Mi such that a medial ball centered

at u(x) touches x; see Figure 7(b). Since Si is differentiable, u(x) is unique. Assign a vector vshrink(x) to

each x in Si of length ‖u(x)− x‖, as exhibited in part (c), and renormalize these values over the curve Si so

that ∫
x∈Si

vshrink(x) · n̂ dc = −1.

Part(d) shows the vectors after rescaling.

( b )( a ) ( c ) ( d )

Figure 7. Assignment of the vshrink(x) velocity vectors.

4.2. We desire the adjacency graph to remain unchanged throughout the homotopy deformation. A natural

way to preserve adjacency is to ensure that certain edges of the outer medial axis never contract to a point.

The Voronoi edges correspond to the set of points that have more than one closest point to two distinct

regions. It is clear that these edges must be preserved, but they alone are not enough.

Definition. The homology graph MH is obtained by iteratively deleting vertices of degree one of the outer

medial axis. The edges of MH are called homology edges.

The top diagrams of Figure 8 show Mo for different regions A, B, and C, whereas diagrams on the

bottom display their associated adjacency graph. The Voronoi edges are marked as single dashed lines and

the remaining edges of Mo are marked as thickened dashed lines. These thickened edges correspond to a

set of points that have more than one closest point to the same region, and thus do not contribute to the

adjacency graph. The thickened edges in Figure 8(a) and (b) are homology edges, and are distinct from

the non-homology edges marked in (c). Although the homology edges do not directly contribute to the
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Figure 8. The marked edges of Mo in (a) and (b) are homology edges, but not Voronoi
edges. The marked edges in (c) are not homology edges.

adjacency graph, they help preserve it. For example, the marked homology edge in Figure 8(a) is keeping

regions A and C from becoming adjacent. Similarly, marked homology edges of Figure 8(b) are separating

regions A and C, along with separating regions C, D and E from each other. A non-homology edge, on the

other hand, like those marked in Figure 8(c), are not needed for preservation of relative position; indeed,

we obtain the following:

Theorem. If the homology graph is preserved then so is the adjacency graph.

Proof. Each leaf of the graph Mo corresponds to a set of points that have more than one closest point to the

same region. Since a vertex of a leaf has degree one and is free, contracting the edge along the free vertex

will not alter the adjacency of regions. Doing this iteratively for all leaves results in the MH . �

Adjacency Preservation: We assign an additional velocity term, based on the length of a homology edge

and its distance to the nearest point on S. Choose a decreasing continuous function h : R
+ → R where

h(0+) = +∞. For a point y on an edge e of Mo, let �e be the length of e. Define H : Mo → R, where

(4.1) H(y) =

{
h(�e) e is a homology edge
0 otherwise.

For a point x in Si, let u(x) be the first intersection of the outer medial axis Mo with the ray pointing

normally outward from x. Now, define the constant ∆i to be

∆i =
∫

x∈Si

H(u(x)) vgrow(x) · n̂ dc



SHAPE DEFORMATION IN CONTINUOUS MAP GENERALIZATION 9

and define

vprotect(x) = H(u(x)) vgrow + ∆i vshrink.

This term, as it is meant to preserve adjacency, is constructed in order to not affect the rate of change of

area. In particular, note that ∫
x∈Si

vprotect(x) · n̂ dc = 0.

Remark. So far we have defined velocity vectors at a given scale level. It is clear that these vectors depend

implicitly on scale level s since the geometry of the regions depend on it. Thus, although we have denoted

velocity vectors as v∗(x), a more accurate notation would be v∗(x, s). However, we will continue to suppress

the dependance on s for clarity of notation.

4.3. We are now in place to state the entire deformation method. Given parameters αi, βi and γi, the

equation of motion for points x in Si is given by the partial differential equation

(4.2)
∂

∂s
r(x, s) = αi vgrow(x) + βi vshrink(x) + γi vprotect(x)

satisfying the given initial conditions r(x, 0) = φ(x). Figure 9 shows the assignment of velocity vectors to

the boundary of a region, along with its deformation over scale change. Although this equation of motion

( a ) ( b ) ( c ) ( d )

Figure 9. Assignment of velocity vectors and its subsequent deformation.

is defined only on the boundaries S of each region, one can extend it to interiors of the regions, as follows:

Each point x in Ri lies on a unique segment which connects a point u(x) on Mi to a point p(x) on Si. This

segment is a radius of the medial ball centered at u(x), going through x, touching p(x); see the line segments

in Figure 7(c). We apply a straight-line deformation to this line segement. Thus, for each x in Ri, let

(4.3)
∂

∂s
r(x, s) =

dist(x, u(x) )
dist( p(x), u(x) )

∂

∂s
r(p(x), s),

where ∂
∂sr(p(x), s) is defined in Eq. (4.2). We note some features of this method:

(1) The parameter αi is called the growth-rate of region Ri as the rate of growth due to its corresponding

term in the equation is exactly αi. The desired growth-rate will be specified by the user, yielding an

extra degree of freedom.

(2) The parameter βi is called the shrink-rate as the rate of growth is exactly −βi. By adjusting βi the

user may change the quality of the deformation. A high value for βi will allow a region to be very

flexible and to quickly recede from other regions. On the other hand, if βi = 0, the boundaries S
may never recede, forcing regions to deform around the original images φ(R); each region will recede

only due to vprotect.
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(3) The parameter γi is also defined by the user and can be adjusted to control the quality of defor-

mations. If γi is large, deformations may appear unnatural as part of the region may expand very

quickly to protect an edge. On the other hand, if γi is small, edge protection will not happen until

an edge has nearly contracted. Indeed, such sudden changes will make numerical integration of these

equations very difficult. The function h, also defined by the user, appearing in vprotect, further

determines the quality of deformation due to the edge protection term.

The following result is an immediate consequence of our construction:

Theorem. Let k be any constant. For each region Ri, choose αi and βi such that αi − βi = k µ(Ri).

Then the solution to Eq. (4.2) will preserve the area-ratios of the regions throughout the deformation.

Proof. Let αi, βi and γi be parameters for region Ri, and let r(x, s) be a solution to Eq. (4.2). Then the

rate of change of the area of Ri is given by
d

ds
µ(r(Ri, s)) =

∫
x∈Si

∂

∂s
r(x, s) · n̂ dc

= αi

∫
x∈Si

vgrow(x) · n̂ dc + βi

∫
x∈Si

vshrink(x) · n̂ dc + γi

∫
x∈Si

vprotect(x) · n̂ dc

= αi − βi

= k µ(Ri).

Solving this first-order equation, we get

µ(r(Ri, s)) = ks µ(Ri) + µ(Ri) = (ks + 1) µ(Ri).

It follows that area-ratios will be preserved. �

5. End-States and Cartograms

5.1. Although our goal is to find a homotopy which encapsulates continuous change of scales, the question

of finding an end-state is itself interesting. It is easy to see that the end-state in not necessarily unique.

Figure 10(a) shows an example of an initial configuration of regions, along with three (b – d) possible end-

states, all of which capture different information. This illuminates the fundamental challenge to calculating

( a ) ( b ) ( c ) ( d )

A

B

A

B

A B

A

B

Figure 10. Given original regions (a), along with three possible end-states.

a final state for the regions, namely, that the different pieces of information we want to preserve on the map

can often work against each other. Consequently, the notion of a canonical solution to this problem must

necessarily include a prioritization of the desired map information to be preserved. Although an end-state

solution is not unique, it always exists.
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Theorem. Given a collection of pairwise disjoint regions in Ω, there exists an end-state.

Proof. The collection of Voronoi regions2

Vi = {x ∈ Ω | dist(x, Si) ≤ dist(x, S \ Si)}
for a set of initial regions {Ri} forms a partition of Ω. The Voronoi regions are not a viable end-state since

they do not necessarily have the desired area-ratios. However, if one deforms the Voronoi regions in such a

way that the adjacency graph is maintained and each resulting region has the desired area, then an end-state

can be obtained.

Let ai be the area of Vi and let bi be the area for Ri at its end-state. If ai = bi for all i, we are done.

Else, at least one Vp has too much area and one Vq has too little. Let κ = min{ap − bp, bq − aq}. Since Ω

is connected, the adjacency graph of the regions is connected; thus, a path γ in the adjacency graph exists

connecting Vp to Vq. We claim that κ-area can be transferred along the chain from Vp to Vq.

Let Vp+1 be the region adjacent to Vp along γ; thus, the union of Vp and Vp+1 can be considered as a new

region. It is easy to see that area can be transferred between Vp and Vp+1 by taking the edge shared by the

two regions and deforming it into a new edge so that Vp loses κ-area and Vp+1 gains κ-area. This process is

continued throughout the path γ. Thus, after each step, at least one more region (either Vp or Vq) has the

correct area. This process terminates in at most n − 1 steps, where n is the number of regions. By design,

the final partition has exactly the same adjacency information and is thus an end-state. �

5.2. A cartogram is a map in which the sizes of regions appear proportional to some other parameter

different from the areas of the regions. Notions of maintaining shape, topology, and adjacency of regions

are clearly valued in such maps; see Tobler [12] for a nice overview. A combinatorial approach preserving

topology is given in Edelsbrunner and Waupotitsch [2], whereas Gastner and Newman [3] use a method

based on diffusion equations. Notice that this end-state problem is closely related to cartograms. The end-

state f : R → Ω forces area-ratios of the regions {f(Ri)} to be identical to the original regions {Ri}. For

cartograms, however, the areas of {f(Ri)} are prescribed by other data or parameters (such as population).

Based on our equation of motion, it is possible to construct cartograms in which the regions displayed in the

cartogram have exactly the desired areas.

Theorem. Given a collection of regions {A1, . . . , An} which partition Ω, an appropriate cartogram of the

regions can be constructed using Eq. (4.2).

Proof. Suppose µ(Ai) = ai and a desired area bi for each Ai is given, where
∑

bi =
∑

ai. Clearly some

regions need to increase in area and others need to decrease in order to obtain the required cartogram.

Without loss of generality, assume region A1 needs to decrease the most in area out of all the regions. Thus,
b1

a1
= min

{
b1

a1
,
b2

a2
, . . . ,

bn

an

}
.

We use the homotopic approach twice — once to shrink the regions in order to recede away from each other

until region A1 has reached its final area — and once to enlarge the remaining regions filling all of Ω as

required. During this process, the growth rates are altered in order to end with the preferred areas.3

2Unlike the Voronoi regions defined in Eq. (2.1), we are not interested in the boundary ∂Ω now.
3It is necessary to separate the regions with some space. To do this we remove from each set Ai a small δ-neighborhood of

∂Ai. The resulting regions (still denoted as Ai) leaves every pair of regions separated by at least 2δ. As always, we smooth out
corners of the regions so that their boundaries are differentiable.
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Recede: For each region Ai, set the growth-rate to be αi = 0 and the shrink-rate to be βi = ai. Find a

solution r1(x, s) to Eq. (4.2) using the regions {Ai} on the scale interval [0, λ], where λ = 1− (b1/a1). Since

αi − βi is the rate of area change of region Ai (as shown by the last Theorem of Chapter 4), deforming the

regions for λ unit of time changes the area of region Ai from µ(Ai) to

µ(Ai) + λ · (αi − βi) = ai + λ · (0 − ai) = ai(1 − λ).

Denoting the resulting deformed regions r1(Ai, λ) as Ri, we note that bi − µ(Ri) ≥ 0 by our choice of λ. In

particular, λ is chosen such that µ(R1) = b1.

Enlarge: Since R1 has attained its final area, all other regions can now be allowed to grow and fill in

the cartogram to obtain the desired result. Choose αi and βi such that αi − βi = bi − µ(Ri). Once again,

find a solution r2(x, s) to Eq. (4.2), now using the regions {Ri} on the scale interval [λ, 1 + λ]. Since αi − βi

is the rate of area change of region Ri, deforming the regions for one unit of time (from λ to λ + 1) changes

the area of region Ri to

µ(Ri) + 1 · (αi − βi) = µ(Ri) + (bi − µ(Ri)) = bi.

The solution will have the property that
∑

µ(r2(Ri, s)) < µ(Ω) for s in the interval [λ, 1 +λ). The resulting

cartogram is now given by the regions r2(Ri, λ + 1), preserving adjacencies and resulting in the desired

areas. �

6. Closing Remarks

Although the focus of this paper is on theoretical approaches to continuous generalization, notably from

a mathematical viewpoint, we conclude by addressing some practical matters which might arise in imple-

menting the differential method defined above. We begin with the algorithmic issues.

(1) Approximation: Since it is not possible to represent an arbitrary continuous function in computer

memory, any algorithm for this problem must approximate the curves by some means. One standard

method which is feasible in this situation is the use of Bezier splines; a classical reference is de Boor

[1]. These can not only approximate the boundary curves of the regions arbitrarily close but preserve

the differentiability that is needed. With regards to Voronoi diagrams and medial axes, spline (or even

polygonal) approximations are also sufficient. The simulation of the deformation process proceeds

by taking small time (scale) slices, moving the control points of the splines and then updating the

medial axes and Voronoi diagrams. Computing the motion of each control point requires computing

several integrals along the curves. The spline representation makes this fairly straight-forward as we

compute the value of the functions at the control points and linearly interpolate the values between.

(2) Complexity: In all cases, the complexity of the structures is determined by how finely the curves

are sampled with spline control points. Voronoi diagrams and medial axes are both computable in

polynomial time; see [6] and [15] for concrete implementations. The total running time of the algo-

rithm is polynomial in the number of control points used to represent the shapes and in the number

of time (scale) slices used in the simulation. Thus, even though the complexity of writing and imple-

menting the given algorithm may be prohibitive for many uses, we believe it is not computationally

intractable to do so.



SHAPE DEFORMATION IN CONTINUOUS MAP GENERALIZATION 13

Although this system provides an understanding of shape deformation during generalization, there are

two strong restrictions that are placed upon the boundary of the regions in Ω.

(1) Differentiable: The most important condition for our regions is that their boundary curve be

differentiable. It is this feature that allows the use of calculating velocities in a continuous man-

ner. On the other hand, most spatial data is stored as polygons having piecewise-linear boundary.

However, it is a classical result of analysis that any piecewise-linear curve can be approximated ar-

bitrarily close4 to a differentiable curve. Thus, any polygonal data can easily be transformed into a

differentiable one for the use of this method.

(2) One component: The second restriction is for each region to have only one boundary component.

At first, this restriction seems to sound quite severe, where usual features such as lakes and islands

found in maps might not be allowed. However, upon close examination, this is not necessarily true.

Recall that Eq. (4.3) extends the deformation of the boundary to the interior of each region. In

addition, Eq. (4.3) places no restriction on the features within the regions; indeed, objects can be

placed in each region which are highly singular and non-differentiable. The downside of this, however,

is that the deformation of each object within a region is not controlled by its own features, but by

the boundary of the region it resides in.

Overall, this paper has focused on the deformation of the shapes of regions in a map during the process

of continuous scale change. The scale change transformations are given in the language of continuous

mathematics, notably that of a homotopy. This homotopic solution, given by Eq. (4.2), is also equipped

with three parameters, αi, βi and γi, which can be altered to satisfy the user’s needs. Although only a

small part of the issues surrounding continuous generalization has been studied, we hope this will lead to

motivating further work in incorporating other mathematical ideas. These tools, along with others, could

show an alternate approach and framework in which generalization can be cast and attacked. The interplay

between the needs that should be met by cartographic scaling along with results which can be formulated

and proven is a vital one. Our intentions are not to provide a complete framework for this, but to lay part

of the foundation.
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