
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

When Can We Treat Trajectories as Points?

Parasara Sridhar Duggirala∗ & Donald R. Sheehy†

Abstract

In the formal verification of dynamical systems, one of-
ten looks at a trajectory through a state space as a
sample behavior of the system. Thus, metrics on tra-
jectories give important information about the different
behavior of the system given different starting states.
In the important special case of linear dynamical sys-
tems, the set of trajectories forms a finite-dimensional
vector space. In this paper, we exploit this vector space
structure to define (semi)norms on the trajectories, give
an isometric embedding from the trajectory metric into
low-dimensional Euclidean space, and bound the Lips-
chitz constant on the map from start states to trajec-
tories as measured in one of several different metrics.
These results show that for an interesting class of tra-
jectories, one can treat the trajectories as points while
losing little or no information.

1 Introduction

The starting point for many problems in computational
geometry is a discrete set of points in a Euclidean space.
Alternatively, many interesting questions arise from sets
of paths or trajectories, and usually, such problems re-
quire very different ideas and methods. In this paper,
we consider a class of trajectories that arise naturally
in the field of formal verification of cyber-physical sys-
tems (CPSs)1 in which one can transform a collection
of trajectories into a set of points while losing little or
no information.

Motivated partly by recent work on using algorithms
from computational geometry to analyze trajectories
through the state space of a CPS [12], we highlight an in-
teresting class of systems studied in that field, for which
natural metrics on trajectories can be nicely embed-
ded into low-dimensional Euclidean space. Generally,
it would be inefficient to treat trajectories as points.
Even though a discrete trajectory in the plane broken
into k pieces can be thought of as a single point in R2k,
the blowup in dimension can be prohibitive for most

∗Computer Science Department, University of Connecticut,
psd@uconn.edu
†Computer Science Department, University of Connecticut,

don.r.sheehy@uconn.edu
1For this paper, we can identify the buzzword “cyberphysical

systems” used in the verification literature with the more general
notion of a dynamical system.

geometric algorithms, especially those where the low-
dimensional (i.e. d = 2 or 3) structure can be exploited.

Control software in safety critical CPSs such as au-
tonomous vehicles and power plants should always sat-
isfy the prescribed safety specification. One of the main
challenges in verifying CPS safety properties is that
they involve a mix of continuous and discrete behaviors.
Even if we ignore the discrete switching, the continuous
dynamics in most real world CPSs are highly nonlinear
and difficult to analyze. For example, when we “sim-
plify” the nonlinear dynamics to a linear approxima-
tion, verifying such linear systems of high dimensions is
still challenging due to the curse of dimensionality. In
dynamic analysis techniques, a few sample executions,
also called trajectories of the systems are computed.
Whether the system satisfies the desired property or
not is inferred after carefully analyzing the generated
executions. As these techniques purely depend on sam-
ple executions, they can be easily integrated into the
testing and debugging phase of CPS design.

In many CPSs, the state space is modeled as a Eu-
clidean space. As in other dynamical systems, the next
state is a function of the current state and often some
inputs or controls. The executions that form the pri-
mary data are trajectories in a Euclidean space. For this
work, we consider the simplest case where the system
is governed by a linear dynamical system. That is, the
derivative of the state is a linear function of the current
state. We will show how one can model the geometry
of the space of trajectories as a set of points. Naturally,
this will depend on a choice of a metric on the space of
trajectories. We will consider several different metrics
on trajectories including Lp-type metrics as well as the
Fréchet distance and the Skorokhod distance.

The main goal is to show when and to what extent one
can study the class of trajectories arising from a CPS us-
ing algorithms and data structures designed for points.
The hope is that this will open the door to more appli-
cations of classical computational geometry of points in
Euclidean space to problems in formal verification.

2 Metrics, Norms, and Samples

In this section, we review several notions that will be
very familiar to most readers. We include the for-
mal definitions for completeness, because our results are
given in considerable generality and the fine distinctions

30th Canadian Conference on Computational Geometry, 2018

in the definitions (e.g. pseudometrics and seminorms)
will be important.

A metric space X is a pair (X,d) where X is a set
and d : X×X → R is a function satisfying the following
conditions.

1. Nonnegative: d(x, y) ≥ 0

2. Symmetric: d(x, y) = d(y, x)

3. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

4. Identity of Indiscernables: d(x, y) = 0 if and only
if x = y.

A function d satisfying the first three properties is called
a pseudometric.

Let V be a vector space over some subfield of the
complex numbers C. A norm V is a function ‖ ·‖ : V →
R satisfying the following conditions.

1. Nonnegative: ‖v‖ ≥ 0

2. Absolutely scalable: ‖cv‖ = |c|‖v‖

3. Triangle Inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖

4. Definite: If ‖v‖ = 0, then v = 0.

A function satisfying the first three conditions of a norm
is called a seminorm. Every norm on V induces a metric
on V defined as d(u, v) = ‖u−v‖. Similarly, a seminorm
induces a pseudometric.

A function between (pseudo)metric spaces, f :
(X,dX) → (Y,dY) is λ-Lipschitz if for all x, x′ ∈ X,
we have

dY (f(x), f(x′)) ≤ λdX(x, x′).

This is a basic stability condition on mappings between
metric spaces. It is most often used to describe real-
valued functions using the standard metric on R.

An ε-sample of a subset U of a metric space is a sub-
set S ⊆ U such that for all u ∈ U , there exists s ∈ S
such that d(u, s) ≤ ε. This notion is closely related to
the Hausdorff distance, a (pseudo)metric on compact
subsets of a (pseudo)metric space.2 It is defined as fol-
lows.

dH(S, T) = max{max
s∈S

min
t∈T

d(s, t),max
t∈T

min
s∈S

d(s, t)}

Using this definition, an ε-sample of U is a subset S ⊆ U
such that dH(S,U) ≤ ε.

2Compactness here is primarily required for distance minimiz-
ers to exist.

3 States and Trajectories

Let X = (X,d) denote a metric space. For this paper,
X will represent the space of states of some system.
Usually, we will only consider states in Rd, but it is
useful to give the following definitions in full generality.

A trajectory in X is a continuous function f : [0, 1]→
X . We are only considering maps from the unit inter-
val, though many of the results in this paper generalize
naturally to other finite length intervals. We use Tr(X)
to denote the set of all trajectories in X .

3.1 Sampling trajectories

A dynamical system may be viewed as a function from
states to trajectories. If we endow both the state space
and the trajectory space with metrics, we can ask when
such a function (the dynamical system) is Lipschitz.
Having a bound on the Lipschitz constant associated
to such a system justifies sampling trajectories by sam-
pling start states. For indeed, the Lipschitz condition
implies that a good sample of the valid start states will
give a correspondingly good sample of the trajectories
in the following precise sense.

Proposition 1 Let X be a set of states and let Θ ⊂ X
be a set of start states. Let Tr(X) be a metric space of
trajectories in X with metric T . If S ⊆ Θ is an ε-sample
of Θ and ξ : X → Tr(X) is λ-Lipschitz, then

ξ(S) := {ξ(s) | s ∈ S} is a λε-sample of ξ(Θ).

Proof. Fix any γ ∈ ξ(Θ). Then γ = ξ(x) for some
x ∈ Θ. So, there exists s ∈ S such that d(s, x) ≤ ε. If
γ′ = ξ(s), then,

T (γ, γ′) = T (ξ(x), ξ(s))

≤ λd(x, s)

≤ λε.

So, for all γ ∈ ξ(Θ), there exists γ′ ∈ ξ(S) such that
T (γ, γ′) ≤ λε. We conclude that ξ(S) is a λε-sample of
ξ(Θ) as desired. �

3.2 Vector Spaces of Trajectories

The set of all trajectories mapping the interval [0, 1]
to the state space Rd naturally forms a vector space.
Let c ∈ R be a scalar and let φ, ψ : [0, 1] → Rd be
trajectories. Scalar multiplication and vector addition
are defined as

(cφ)(t) := cφ(t), and

(φ+ ψ)(t) := φ(t) + ψ(t).

In general, the dimension of this vector space is in-
finite. However, the following important case yields a
finite-dimensional space of trajectories.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Consider systems that evolve in Rd in continuous
time. At a given instant in time, the system state is
denoted as a vector x ∈ Rd and its evolution is given as
a linear differential equation, i.e.,

ẋ = Ax, (1)

where A ∈ Rd×d. By using an extra variable and allow-
ing A to be singular, this includes also the case of affine
systems

ẋ = Ax+B, (2)

where B ∈ Rd×1. The system of trajectories, denoted as
ξ : Rd×R≥0 → Rd are solutions of the initial value prob-
lem of the differential equation given in Equation (1).
Given an initial state x0, ξ(x0, t) denotes the state of the
system at time instance t. The closed form expression
for the trajectories is given in Equation (3) below.

ξ(x0, t) = eAtx0 +

∫ t

0

eA(t−τ)Bdτ, (3)

where eAt = I + At
1! + (At)2

2! + (At)3

3! + . . . represents the
matrix exponential operation. We denote the trajectory
starting from initial state x0 as ξx0

, i.e., ξx0
(t) = ξ(x0, t)

so that it fits with our previous definition of trajectory.

Definition 1 Trajectories of linear dynamical systems
(such as given in Equation (1)) satisfy the superpo-
sition principle. Given any state x0 ∈ Rd, vectors
v1, v2, . . . , vm ∈ Rd, and scalars α1, α2, . . . , αm ∈ R,
the following equality is satisfied.

ξ(x0+

m∑
i=1

αivi, t) = ξ(x0, t)+

m∑
i=1

αi(ξ(x0+vi, t)−ξ(x0, t))

The observation made in Definition 1 follows from the
closed form solution given in Equation (3). Using the
superposition principle, we can infer that for any pair
of states x0, x1 ∈ Rn and for any vector v ∈ Rd,

ξ(x0 + v, t)− ξ(x0, t) = ξ(x1 + v, t)− ξ(x1, t)

These equations reveal the low dimensional vector
space structure of the space of trajectories. Indeed,
given any basis (b1, . . . , bn) for the state space, a trajec-
tory starting from x =

∑n
i=1 xibi is the corresponding

linear combination of basis trajectories:

ξx =

n∑
i=1

xiξbi .

When the matrix A determining the system is non-
singular, then the closed form for the trajectory (Equa-
tion (3)) simplifies to

ξx(t) = eAtx.

For the rest of the paper, we will assume this case for
simplicity.

Figure 1: Two different trajectories with the same im-
age. Left: 3e10πit. Right: 3e2πit.

4 Metrics Spaces of Trajectories

In this section, we will define several classes of metrics
on trajectories. If one is content to view a trajectory
f : [0, 1] → Rd as merely a set of points in the state
space, i.e.

im f := {f(t) | t ∈ [0, 1]},

then the Hausdorff distance provides an easy to define
metric on trajectories. That is, one can define

TH(f, g) := dH(im f, im g).

The Hausdorff distance has a natural geometric inter-
pretation as the minimum radius r such that expanding
im f by r would cover im g and vice versa. Unfor-
tunately, the Hausdorff distance ignores the continuous
structure of the input trajectories. For example, it sees
no difference between the two trajectories of Figure 1,
the first of which makes five revolutions and the second
makes only one.

Indeed, the Hausdorff distance only give a pseudomet-
ric on trajectories as the distance between a trajectory
f and its reverse trajectory g(t) = f(1 − t) is precisely
0.

The Lp-type metrics on trajectories are defined for an
integer p ≥ 1 as follows:

Lp(f, g) :=

(∫ 1

0

‖f(t)− g(t)‖ppdt
) 1

p

.

This includes, in particular, the L∞ distance:

Ld,∞(f, g) := max
t∈[0,1]

d(f(t), g(t)),

where d(·, ·) can be any metric on the state space.
We abuse notation and write L∞ to denote Ld,∞ with
d(x, y) := ‖x − y‖2. We do this primarily because it is
such a popular metric and can also be used to define
other metrics as we will see.

A drawback of Lp-type metrics (usually L∞) is their
inability to recognize similarity of trajectories that dif-
fer only by some continuous reparameterization of time.

30th Canadian Conference on Computational Geometry, 2018

Figure 2: In this example the Fréchet distance between
the curves is less than the L∞ distance because repa-
rameterization allows the lower trajectory to slow down
in the neighborhood of the upper trajectory’s zigzag.

For this reason, the Fréchet distance is often considered.
It is defined as

dF (f, g) := min
h∈H

L∞(f, g ◦ h),

where H is the set of orientation-preserving homeomor-
phisms h : [0, 1] → [0, 1], i.e. the continuous reparame-
terizations of time.

The Fréchet distance is also called the “dog walking
distance” using the metaphor that a person walks along
one trajectory and the dog walks along another [1, 13].
The person may adjust their speed (reparameterize
time) so as to minimize the length of the leash (the L∞
distance). For example in Figure 2, the lower trajectory
can slow down to lessen the impact of the zigzag in the
upper trajectory. It is an interesting exercise to show
that using a different Lp-type metric instead of L∞ in
the definition, does not result in a metric.

Technically, the Fréchet distance gives a pseudomet-
ric on trajectories. The trajectories f and f ◦ h have
Fréchet distance zero despite being different functions.
The triangle inequality follows by composing homeo-
morphisms.

The minimization in the definition of the Fréchet dis-
tance allows a substantial amount of freedom to align
trajectories, sometimes too much freedom to be real-
istic. The Skorokhod distance addressed this issue by
penalizing excessive time reparameterization [11]. This
distance may be viewed as treating time as another
spatial parameter. One starts with a metric on the
space×time product Rn× [0, 1]. For example, one could
use the `p-product metric

`p((x, s), (y, t)) := (d(x, y)p + |s− t|p)1/p.

This includes the `∞ metric

`∞((x, s), (y, t)) := max{d(x, y), |s− t|}.

Note that the definition does not specify a particular
metric d on the state space. The graph of a trajectory
ξ is the trajectory

Gr(ξ)(t) = (ξ(t), t).

One defines a Skorokhod distance (assuming a product
metric is fixed) as

dS(f, g) := dF (Gr(f),Gr(g)).

5 Hilbert Spaces of Trajectories

Just as with finite-dimensional vector spaces, the L2-
norm on trajectories results in a Hilbert space. The
inner product is simply the integral of the standard Eu-
clidean inner product, i.e.

〈ξx, ξy〉 :=

∫ 1

0

ξx(t)>ξy(t)dt.

If we only consider the trajectories coming from a linear,
dynamical system ẋ = Ax, the resulting Hilbert space
only has the dimension of the state space as previously
observed, but moreover, the induced metric is Euclidean
and can be computed explicitly.

Theorem 2 Given a dynamical system in Rd governed
by ẋ = Ax, there exists a matrix L ∈ Rd×d such that
for any x, y ∈ Rd,

L2(ξx, ξy) = ‖Lx− Ly‖2.

Proof.

‖ξx‖2 =

∫ 1

0

ξx(t)>ξx(t)dt

=

∫ 1

0

(eAtx)>(eAtx)dt

= xT
(∫ 1

0

(eAt)>(eAt)dt

)
x

Let M be the matrix
∫ 1

0
(eAt)>(eAt)dt so that ‖ξx‖2 =

x>Mx. As the matrices are positive definite for all t,
it follows that M is also positive definite. Thus, the
Cholesky decomposition M = LL> exists and the ma-
trix L has the property that

‖ξx‖2 = (Lx)>(Lx).

This fact about the L2 norm immediately implies the
corresponding claim about the L2 metric. �

Computational Issues and Implications Following the
proof of Theorem 2, a natural approach to computing
L, at least approximately, is to discretize the integral∫ 1

0
(eAt)>(eAt)dt and compute the pieces using the lead-

ing terms of the expansion of the matrix exponential,

eAt = I + At
1! + (At)2

2! + · · · . The result is a positive
definite matrix M whose Cholesky decomposition gives
the desired linear operator L.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

One immediate use for Theorem 2 is in the analy-
sis of collections of trajectories. Any data analysis de-
pending on the distances between trajectories, such as
clustering or subsampling, would naturally require com-
puting many pairwise distances. If the trajectories are
discretized into k pieces, the straightforward computa-
tion of the L2 distance would require O(kd) time. If in-
stead, one first computes L, then the time to compute
these distances is reduced to O(d2). For high-fidelity
measurements with large k, this can be a substantial
speedup. This idea, though technically simple, has not
been exploited in the literature on formal verification of
these systems.

6 The Lipschitz Bound

It is only a small consolation if a car that always crashes,
spends most of its time in an “uncrashed” state. Un-
fortunately, it is the nature of L2 metrics to average
distances over time, so such bad behaviors of a system
could be missed. For this reason, a max-norm like L∞
is often preferable. However, an isometric embedding of
the trajectories into Euclidean space as in Theorem 2
is not possible (consider A = 0 for example). The al-
ternative we propose in this section is to at least bound
the Lipschitz constant of the system when viewed as a
mapping from a metric on states to a metric on trajec-
tories. We give such a bound in considerable generality;
it applies to any seminorm on trajectories and we show
its implications for other pseudometrics including the
Fréchet and Skorokhod distance.

Theorem 3 Let Rd be the states equipped with a norm
‖ · ‖. Let ẋ = Ax be a linear dynamical system and let
TrA(Rd) be the trajectories in Rd arising from A en-
dowed with some seminorm, ‖ · ‖Tr. Let (b1, . . . , bd) be
a basis for Rd and let (ξ1, . . . , ξd) be the corresponding
basis for TrA(Rd). Let t = ‖(‖ξ1‖Tr, . . . , ‖ξd‖Tr)‖ Then,
the mapping from Rd to TrA(Rd) is t-Lipschitz. That
is, for any pair of states x, y ∈ Rd,

‖ξx − ξy‖Tr ≤ t‖x− y‖.

Proof. Write the states x and y in terms of the basis
(b1, . . . , bd) as follows.

x =

d∑
i=1

xibi and y =

d∑
i=1

yibi.

Then, the trajectories ξx and ξy can be written in the
corresponding basis of trajectories as follows.

ξx =

d∑
i=1

xiξi and ξy =

d∑
i=1

yiξi.

We can now bound ‖ξx − ξy‖Tr as follows.

‖ξx − ξy‖Tr = ‖
d∑
i=1

(xi − yi)ξi‖Tr [by definition]

≤
d∑
i=1

‖(xi − yi)ξi‖Tr [triangle ineq.]

=

d∑
i=1

(xi − yi)‖ξi‖Tr [norms are linear]

≤ t‖x− y‖ [Cauchy-Schwarz]

�

The hypothesis about working with (semi)norms in
the theorem above are necessary to apply the Cauchy-
Schwarz inequality. Thus, it’s not clear how to duplicate
this proof while replacing the norms on trajectories with
a more elaborate distance on trajectories. However, the
theorem naturally extends to give a Lipschitz bound
when the distances on trajectories are measured using
either the Fréchet distance or the Skorokod distance by
using the relationship between these metrics and the
L∞ norm.

Theorem 4 Let Rd be the states equipped with a norm
‖ · ‖. Let A be a linear dynamical system and let
TrA(Rd) be the trajectories in Rd arising from A en-
dowed with either the Fréchet distance or the Skorokhod
distance. Let (b1, . . . , bd) be a basis for Rd and let
(ξ1, . . . , ξd) be the corresponding basis for TrA(Rd). Let
t = ‖(‖ξ1‖∞, . . . , ‖ξd‖∞)‖ Then, the mapping from Rd
to TrA(Rd) is t-Lipschitz.

Proof. It suffices to observe that for any pair of trajec-
tories f, g : [0, 1] → Rd and any `p-product metric on
Rd × [0, 1], the following inequalities hold.

dS(f, g) ≤ dF (f, g) ≤ L∞(f, g)

These inequalities hold by replacing the minimization
over homeomorphisms with the specific choice of the
identity homeomorphism. Thus, the theorem follows
from Theorem 3 using the L∞ metric on trajecto-
ries. �

7 Related Work, Conclusion, and Future Work

Proving properties of software systems while leverag-
ing the data generated from the sample executions has
been a well studied topic in the domain of formal ver-
ification [10, 14, 7, 15, 9]. However, these techniques
do not deal with the CPS where the dynamics of the
physical environment is of utmost importance. Recent
techniques to integrate the information generated from
sample trajectories for proving properties of CPS have

30th Canadian Conference on Computational Geometry, 2018

been investigated [4, 5]. In a recent work [6], the fact
that the trajectories form a vector space has been lever-
aged to improve the scalability of verification by two
orders of magnitude [2]. Techniques similar to [5] to pro-
vide probabilistic guarantees about trajectories of CPS
have been investigated in [8].

This work attempts to address the gap between the
data-driven verification technique and computational
geometry. The focus on linear dynamical systems is
because of two reasons. First, linear dynamical sys-
tems describe a large set of control systems that are in
deployment. Second, these systems enjoy a rich set of
properties (such as the superposition principle) that can
be readily exploited to represent trajectories as points.
Mapping from trajectories to points would also help us
in performing topological data analysis [3] over trajec-
tories.

While in this paper we considered a specific sub-class
of dynamical systems, in our future work, we intend
to apply similar techniques to nonlinear dynamics. Our
goal is to eventually perform data-driven analysis of tra-
jectories where partial or no model information is avail-
able.

References

[1] Helmut Alt and Michael Godau. Computing the
fréchet distance between two polygonal curves. Int.
J. Comput. Geometry Appl, 5(1 & 2):75–91, 1995.

[2] Stanley Bak and Parasara Sridhar Duggirala.
Simulation-equivalent reachability of large linear
systems with inputs. In International Conference
on Computer Aided Verification, pages 401–420.
Springer, 2017.

[3] Gunnar Carlsson. Topology and data. Bulletin
of the American Mathematical Society, 46(2):255–
308, 2009.

[4] Alexandre Donzé and Oded Maler. Systematic sim-
ulation using sensitivity analysis. In International
Workshop on Hybrid Systems: Computation and
Control, pages 174–189. Springer, 2007.

[5] Parasara Sridhar Duggirala, Sayan Mitra, and Ma-
hesh Viswanathan. Verification of annotated mod-
els from executions. In Proceedings of the Eleventh
ACM International Conference on Embedded Soft-
ware, page 26. IEEE Press, 2013.

[6] Parasara Sridhar Duggirala and Mahesh
Viswanathan. Parsimonious, simulation based
verification of linear systems. In International
Conference on Computer Aided Verification, pages
477–494. Springer, 2016.

[7] Michael D Ernst, Jeff H Perkins, Philip J Guo,
Stephen McCamant, Carlos Pacheco, Matthew S
Tschantz, and Chen Xiao. The daikon system for
dynamic detection of likely invariants. Science of
Computer Programming, 69(1-3):35–45, 2007.

[8] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh
Viswanathan. Dryvr: Data-driven verification and
compositional reasoning for automotive systems. In
International Conference on Computer Aided Ver-
ification, pages 441–461. Springer, 2017.

[9] Pranav Garg, Christof Löding, P Madhusudan,
and Daniel Neider. Ice: A robust framework
for learning invariants. In International Confer-
ence on Computer Aided Verification, pages 69–87.
Springer, 2014.

[10] Patrice Godefroid, Nils Klarlund, and Koushik Sen.
Dart: directed automated random testing. In ACM
Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[11] Rupak Majumdar and Vinayak S. Prabhu. Com-
puting the skorokhod distance between polygonal
traces. In Proceedings of the 18th International
Conference on Hybrid Systems: Computation and
Control, pages 199–208, 2015.

[12] Rupak Majumdar and Vinayak S Prabhu. Com-
puting distances between reach flowpipes. In Pro-
ceedings of the 19th International Conference on
Hybrid Systems: Computation and Control, pages
267–276. ACM, 2016.

[13] Günter Rote. Computing the fréchet distance be-
tween piecewise smooth curves. Computational Ge-
ometry: Theory and Applications, 37(3):162–174,
2007.

[14] Koushik Sen, Darko Marinov, and Gul Agha. Cute:
a concolic unit testing engine for c. In ACM
SIGSOFT Software Engineering Notes, volume 30,
pages 263–272. ACM, 2005.

[15] Rahul Sharma. Data-driven Verification. PhD the-
sis, Stanford University, 2016.

