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Abstract

Let B be a square region in the plane. We give an effi-
cient algorithm that takes a set P of n points from B,
and produces a set M ⊂ B with the property that the
distance to the second nearest point in M approximates
the distance to the kth nearest point of P . That is, there
are constants α, β ∈ R such that for all x ∈ B, we have
αdP,k(x) ≤ dM,2(x) ≤ βdP,k(x), where dM,2 and dP,k
denote the second nearest and kth nearest neighbor dis-
tance functions to M and P respectively. The algorithm
is based on Delaunay refinement. The output set M also
has the property that its Delaunay triangulation has a
lower bound on the size of the smallest angle. The pri-
mary application is in statistical density estimation and
robust geometric inference.

1 Robust Sizing Functions

Since the pioneering work of Chew [3] and Rup-
pert [9], Delaunay refinement has remained an impor-
tant approach to mesh generation (see for example the
book [2]). The algorithm: Starting from the Delau-
nay triangulation of the input points P (restricted to
a bounding box B), repeatedly add the circumcenter
of any triangle whose circumradius is more than a con-
stant times larger than the length if its shortest edge.1

Such a triangulation is said to have bounded radius-edge
ratio and will be referred to as a quality mesh and will
necessarily also have a lower bound on the size of the
smallest angle. Ruppert showed that not only does this
remarkably simple algorithm terminate, it produces a
point set that is asymptotically optimal in size [9].

The key to Ruppert’s analysis is the so-called feature
size function, which for a point set P is the distance to
the second nearest point of P , denoted dP,2 : R2 → R.
There is a constant γ such that output set M has the
property that

γdP,2 ≤ dM,2 ≤ dP,2.

The optimality of the approach comes from proof that
if M is the vertex set of a quality mesh containing P ,
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1Ruppert’s analysis also works for more general inputs includ-
ing line segments as well.

then

|M | = Θ

(∫
x∈B

dx

dP,2(x)2

)
.

The preceding integral defines a measure, whose den-
sity is related to the second nearest neighbor density
estimator used in statistics. It is a useful feature of
Delaunay refinement that it reveals this function with-
out explicitly computing or estimating it. However, for
the convergence of such estimators, one must generally
choose k as a function of n = |P | so that k(n)/n → 0
and k(n)/log(n) → ∞ as n → ∞ [5]. So, for example,
taking k(n) =

√
n is reasonable and sufficient. Moti-

vated by this relationship between mesh generation and
density estimation, we address the following problem.

Problem 1 Given a set P in a bounding box B ⊂ R2,
find a quality mesh with vertex set M ⊂ B such that

αdP,k ≤ dM,2 ≤ βdP,k

for some constants α and β.

We show how to solve this problem using a variation of
Delaunay refinement.

2 Background

We will denote the Euclidean distance between points
a, b ∈ R2 as ‖a−b‖. For any set S ⊂ R2 and integer k ≥
1, define dS,k : R2 → R so that dS,k(x) is the distance to
the kth nearest point of S to x ∈ R2. Formally, letting(
S
k

)
denote the set of k element subsets of S,

dS,k(x) := min
U∈(Sk)

max
y∈U
‖x− y‖.

The distance from a point x ∈ R2 to a set S is dS,1(x)
and will be denoted dS(x).

We define the ball centered at a point x ∈ R2 with
radius r as

ball(x, r) := {y ∈ R2 | ‖x− y‖ ≤ r}.

The smallest ball centered at a point x ∈ R2 containing
k points in a set S will be denoted

ballx,Sk := ball(x,dS,k(x)).
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For a set S ⊂ R2 we will define a triangle with vertices
u, v, w ∈ S as the convex closure of the points u, v, w:

tu,v,w := {au+ bv + cw | a+ b+ c = 1, a, b, c ∈ R≥0}

The circumcenter of a triangle t = tu,v,w is the unique
point that is equidistant to each vertex u, v, w, and will
be denoted cc(t). This distance to each vertex u, v, w is
the circumradius of t, and will be denoted rad(t) so
that

rad(t) := ‖cc(t)− u‖ = ‖cc(t)− v‖ = ‖cc(t)− w‖

The circumcircle of t is the smallest ball containing the
points u, v, w, and will be denoted cball(t). Formally,

cball(t) := ball(cc(t), rad(t)).

2.1 Delaunay Triangulations and Voronoi Diagrams

Definition 1 For a set S ⊂ R2 the Delaunay trian-
gulation of S is the set of triangles t = tu,v,w such that
no point p ∈ S\{u, v, w} is contained in the circumcircle
of t and is denoted

DelS := {tu,v,w | cball(tu,v,w) ∩ S = {u, v, w}}

The set of Delaunay vertices of DelS is the set S itself.
The Voronoi cell of a point u ∈ S is the set of points

x ∈ R2 that are closer to u than any other point in S.

VorS(u) := {x ∈ R2 | dS(x) = ‖u− x‖}.

Definition 2 For a set S ⊂ R2 the Voronoi diagram
of S is the set of all Voronoi cells of the points in S and
is denoted

VorS := {VorS(u) | u ∈ S}.

For a set S ⊂ R2 the Voronoi diagram VorS is dual
to the Delaunay triangulation DelS . That is, Delau-
nay vertices u ∈ S correspond to Voronoi cells (faces)
VorS(u) and the Delaunay triangles t ∈ DelS corre-
spond to Voronoi vertices, defined to be the circum-
centers cc(t). The set of Voronoi vertices corresponding
to a point u ∈ S will be denoted

Vor0S(u) := {cc(tu,v,w) ∈ VorS(u) | tu,v,w ∈ DelS} .

The Voronoi edge corresponding to points u, v ∈ S is
the intersection of the Voronoi cells of u and v and will
be denoted

VorS(u, v) := VorS(u) ∩ VorS(v).

For any u, v ∈M such that VorS(u, v) 6= ∅ the Voronoi
edge VorS(u, v) corresponds to an edge of the Delaunay
triangulation, defined to be the convex closure of the
points u and v.

The outradius of a Voronoi cell VorS(u) is the radius
of the smallest ball centered at u containing Vor0S(u),
and will be denoted

R(u) := max
c∈Vor0S(u)

‖c− u‖

The outradius of u is the distance to the farthest
Voronoi vertex of VorS(u), denoted

farCorner(VorS(u)) := argmax
c∈Vor0S(u)

‖c− u‖.

Definition 3 The aspect ratio of a Voronoi cell
VorS(u) is the ratio of the distance to its farthest corner
to the distance to its nearest edge and is denoted

aspect(VorS(u)) :=
2R(u)

dS,2(u)
.

A set S ⊂ R2 is said to be τ-well spaced if

aspect(VorS(u)) ≤ τ

for all u ∈ S.

2.2 Periodic Point Sets

To avoid additional boundary conditions we will work
in a covering space of the flat torus, which can be
defined as T2 = R2/Z2 (see [1]). That is, we will restrict
ourselves to a bounding box B = [0, 1)2 and use copies
of a set S ⊂ B to simulate periodicity.

For any finite point set S ⊂ B we will define the
corresponding periodic point set as the set S + Z2

imbued with an equivalence relation so that x ∼ y if
there exists some a ∈ Z2 such that y = x + a. Noting
that s ∈ P for all s ∈ S we may therefore refer to the
set of periodic copies of s by the equivalence class

[s] :=
{
x ∈ S + Z2 | ∃a ∈ Z2 : x = s+ a

}
.

3 Algorithm

For a bounding box B = [0, 1)2 the following algorithm
will use periodic points x ∈ B + Z2 to denote equiva-
lence classes [x] of which x ∈ B are representative. The
use of periodic points is a technical requirement of the
algorithm in order to avoid additional points along the
edge of the bounding box. As our analysis does not de-
pend on the use of periodic points we will return to the
original sets in the following sections.

Algorithm 1 takes as input a finite point set P ⊂ B,
a set of initial mesh vertices M0 ⊂ B which we will take
as a set of points arranged along a square in B, and
constants τ ≥ 2, k ≥ 1. The algorithm constructs a
periodic set of mesh vertices M ⊂ B + Z2 satisfying

aspect(VorM (v)) ≤ τ
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for all v ∈M and

|VorM (v) ∩ P | < k, dP,k(cc(t)) > rad(t)

for all v ∈M , t ∈ DelM .

Figure 1: An application of the Clean procedure which
chooses a point v ∈M with aspect(VorM (v)) > τ (red
cell, top) and adds farCorner(VorM (v)) (red point,
bottom).

Algorithm 1 kNNRefine(P,M0, τ, k)

1: M0 ←M0 + Z2, P ← P + Z2, M ←M0

2: while there is a v ∈ M or t ∈ DelM such that
dP,k(cc(t)) ≤ rad(t) or |VorM (v) ∩ P | ≥ k do

3: M ← Break(M,P )
4: while ∃v ∈M with aspect(v) > τ do
5: M ← Clean(M, v)

6: procedure Break(M,P )
7: if ∃t ∈ DelM with dP,k(cc(t)) ≤ rad(t) then
8: M ←M ∪ {cc(t)}
9: else if ∃v ∈M with |VorM (v) ∩ P | ≥ k then

10: M ←M ∪ {farCorner(VorM (v))}
11: procedure Clean(M,v)
12: M ←M ∪ {farCorner(VorM (v))}

Figure 1 depicts an application of the Clean proce-
dure to a point v ∈M such that aspect(VorM (v)) > τ ,
resulting in the insertion of farCorner(VorM (v)).

Figure 2: An example of the Break procedure applied
to an instance with v ∈ M such that VorM (v) (red
cell, left) containts at least k = 4 points in P (blue
rings) initiating the insertion of farCorner(VorM (v))
(red point, right).

Figure 2 illustrates an application of the Break pro-
cedure to a Voronoi cell containing at least k = 4 points
in P , initiating the insertion its farthest corner. Sim-
ilarly, Figure 3 depicts an application of the Break
procedure to a configuration in which a Delaunay cir-
cumcircle contains at least k = 4 points in P , initiating
the insertion its circumcenter.

Figure 3: An example of the Break procedure applied
to an instance with t ∈ DelM such that cball(t) (red
disk, left) contains at least k = 4 points in P (blue rings)
initiating the insertion of cc(t) (red point, right).

Restricting ourselves to the bounding box B = [0, 1)2

the remainder of this section will provide upper and
lower bounds on the second nearest neighbor function
dM,2 in terms of the kth nearest neighbor function dP,k
in order to prove Theorem 6 stated below.

Theorem 6 (Main Theorem) Let P ⊂ B be a finite
point set and τ ≥ 2, k ≥ 1 be constants. Let M0 ⊂ B be
a set of initial mesh vertices.

If kNNRefine(P,M0, τ, k) terminates the resulting
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set of mesh vertices M is τ -well spaced,

|VorM (v) ∩ P | < k, dP,k(cc(t)) > rad(t)

for all v ∈M , t ∈ DelM , and

αdP,k ≤ dM,2 ≤ βdP,k

where α = τ−2
5τ−2 , β = 3−ϑτ

1−ϑτ and ϑτ =
√

1− 1
τ2 .

3.1 Lower Bound

We will first show that the second nearest neighbor func-
tion dM,2 to the output set M ⊂ B is not too small
compared to the kth-nearest neighbor function dP,k to
the input set P ⊂ B.

Let M0 ⊆ M be a set of input vertices and vi be
the ith circumcenter added to M . We define an order
relation ≺ on M such that for all i > 0

u0 ≺ vi−1 ≺ vi

where u0 ∈M0.

Definition 4 For a set M ⊂ B imbued with the order
relation ≺ the insertion radius of a v ∈ M is the
distance from v to its nearest predecessor and is denoted

λv := min
u≺v
‖u− v‖.

The insertion radius λvi of the ith vertex is the dis-
tance to the closest point in Mi ⊂ M where Mi =
{vj | 0 < j < i} is the ordered set of mesh vertices in
M before the point vi is added. Note that the insertion
radius of a point vi will be at most ‖vi − vj‖ for all
vj ∈Mi.

Lemma 1 shows that it suffices to bound the insertion
radius for each v ∈ M in order to bound dM,2 by dP,k
over M .

Lemma 1 Let K > 0 be a constant.
If dP,k(v) ≤ (K − 1)λv then

dP,k(v) ≤ KdM,2(v)

for all v ∈M .

Proof. Let v ∈M and u ∈M \ {v} be such that ‖u−
v‖ = dM,2(v). If u ≺ v then by assumption

dP,k(v) ≤ (K − 1)λv < Kλv

≤ K‖u− v‖ = KdM,2(v).

So, we may assume v ≺ u, which implies
λu ≤ ‖u − v‖ = dM,2(v). Thus,

dP,k(v) ≤ dP,k(u) + ‖u− v‖ [dP,k is Lipschitz]

≤ (K − 1)λu + ‖u− v‖ [dP,k(u) ≤ (K − 1)λu]

≤ KdM,2(v). [λu ≤ dM,2(v)]

�

We now apply Lemma 1 to the kth-nearest neighbor
function to provide a lower bound for dM,2 by induction
on the set of mesh vertices M produced by Algorithm 1.
We will set λu0 ≥ dP,k(u0) for all u0 ∈M0.

Lemma 2 Let M0 ⊂ B be a set of initial mesh ver-
tices such that dP,k(u0) ≤ λu0

for all u0 ∈ M0. For
constants τ ≥ 2, k ≥ 1 let M ⊂ B be a set of mesh
vertices imbued with the order relation ≺ resulting from
kNNRefine(P,M0, τ, k).

If M is τ -well spaced then for all v ∈M

dP,k(v) ≤ KdM,2(v)

where K = 2τ
τ−2 .

Proof. Lemma 1 implies that it suffices to show that
dP,k(v) ≤ (K − 1)λv for all v ∈ M . We will show this
by induction on the number of circumcenters added.

LetMi denote the set of mesh vertices inM before the
ith circumcenter is added. In the base case we require
dP,k(u0) ≤ λu0

for all u0 ∈ M0. It follows dP,k(u0) ≤
(K − 1)λu0 as K ≥ 2.

Assume inductively that dP,k(v) ≤ (K − 1)λv for all
v ∈Mi, and note that Lemma 1 implies

dP,k(v) ≤ KdMi,2(v)

for all v ∈Mi.
Let vi be the ith circumcenter added and let u ∈

Mi be the vertex whose Voronoi cell had poor quality,
initiating the insertion of vi. Letting w ∈ Mi be the
second nearest neighbor of u so that w 6= u and ‖u −
w‖ = dMi,2 we have

dP,k(vi) ≤ dP,k(u) + ‖u− vi‖ [dP,k is 1-Lipschitz]

≤ KdMi,2(u) + ‖u− vi‖ [Lemma 1 and hypothesis]

≤ K‖u− w‖+ ‖u− vi‖ [Definition of w]

≤ ‖u− vi‖
(
2K

τ
+ 1

) [
aspect(VorMi

(u)) > τ

]
≤ ‖u− vi‖(K − 1)

[
K =

2τ

τ − 2

]
≤ λvi(K − 1). [Definition of u]

As dP,k(v) ≤ (K−1)λv for all v ∈Mi by our inductive
hypothesis, Mi+1 = Mi∪{vi}, and dP,k(vi) ≤ λvi(K−1)
it follows that dP,k(v) ≤ (K − 1)λv for all v ∈ Mi+1.
It follows by induction that dP,k(v) ≤ (K − 1)λv for
all v ∈ M =

⋃
Mi by induction, and we may therefore

conclude
dP,k(p) ≤ KdM,2(p)

for all p ∈M by Lemma 1. �

Figure 4 illustrates the proof of Lemma 2, depicting
the Voronoi cell VorMi

(u) with bad aspect ratio in the
top figure, and the resulting Voronoi diagram VorMi+1

after the insertion of vi on the bottom. Note, the inser-
tion radius λvi = ‖vi−u‖ of vi satisfies minv≺vi ‖v−vi‖
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as the closest point to vi is the point u initiating its
insertion. This fact allows for the inductive proof of
Lemma 2 as for all i such that aspect(VorMi(u)) > τ
for some u ∈ Mi the ith mesh vertex added to M is
vi = farCorner(VorMi

(u)) and λvi = ‖vi − u‖.
Theorem 3 extends the bound on dM,2 over M pro-

vided by Lemma 2 to all points in B for τ -well spaced
sets M .

Figure 4: An illustration of Lemma 2 in which
aspect(VorMi

(u)) > τ in VorMi
(red cell, top) and the

insertion radius λvi of vi = farCorner(VorMi
(u)) is the

distance from u to vi (red point, bottom).

Theorem 3 Let P ⊂ B be a finite point set and let
M0 ⊂ B be a set of initial mesh vertices such that
dP,k(u0) ≤ λu0

for all u0 ∈ M0. For constants
τ ≥ 2, k ≥ 1 let M ⊂ B be a set of mesh ver-
tices imbued with the order relation ≺ resulting from
kNNRefine(P,M0, τ, k).

If M is τ -well spaced then for all x ∈ B

αdP,k(x) ≤ dM,2(x).

where α = τ−2
5τ−2 .

Proof. First note that because M is a ordered and
dP,k(u0) ≤ λu0 for all u0 ∈M0 Lemma 2 implies

dP,k(v) ≤ KdM,2(v)

for all v ∈M .
Let x ∈ B and v ∈ M be such that x ∈ VorM (v).

Because dM,2 and dP,k are 1-Lipschitz, it follows

dP,k(x)− ‖x− v‖ ≤ dP,k(v)

≤ K(dM,2(x) + ‖x− v‖),

therefore, because ‖x− v‖ ≤ dM,2(x) we have

dP,k(x) ≤ KdM,2(x) + ‖x− v‖(K + 1)

≤ dM,2(x)(2K + 1)

where K = 2τ
τ−2 , which implies αdP,k(x) ≤ dM,2(x) for

all x ∈ B. �

3.2 Upper Bound

We now must show that the second nearest neighbor
function to the mesh vertices M ⊂ B is not too large
compared with the kth-nearest neighbor function to the
input set P . We will first show that the distance from
any point x ∈ VorM (p) to two points in M is within a
constant factor of the distance from p to the circumcen-
ter cc(t) of some Delaunay triangle t ∈ DelM .

Lemma 4 Let M be a τ -well spaced such that
|VorM (v) ∩ P | < k for all v ∈ M and let β > 1 be
a constant. Let p ∈ M be such that x ∈ VorM (p) for
any x ∈ B.

If dP,k(x) < 1
βdM,2(x) then there exists a Delaunay

triangle t ∈ DelM with cc(t) ∈ Vor0M (p) such that

dM,2(x) ≤ β

β − 1
‖p− cc(t)‖.

Proof. Note that because |VorM (v) ∩ P | < k for all
v ∈ M we have that ballx,Pk 6⊂ VorM (v), and there
therefore must exist some q ∈ M such that ballx,Pk ∩
VorM (q) 6= ∅ and VorM (p, q) 6= ∅. It follows that there
exists some x′ ∈ VorM (p, q)∩ ballx,Pk with dM,2(x′) =
‖p− x′‖ = ‖q − x′‖ such that

dM,2(x) ≤ dM,2(x
′) + ‖x− x′‖ [dM,2 is 1-Lipschitz]

= ‖p− x′‖+ ‖x− x′‖ [‖p − x′‖ = dM,2(x
′
)]

≤ ‖p− x′‖+ dP,k(x) [‖x − x′‖ ≤ dP,k(x)]

≤ ‖p− x′‖+ 1

β
dM,2(x)

[
dP,k(x) <

1

β
dM,2(x)

]
Thus, dM,2(x) ≤ β

β−1‖p− x
′‖.

Because the point x′ lies on the Voronoi boundary
VorM (p, q) there must exist some t ∈ DelM with cc(t) ∈
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Vor0M (p)∩Vor0M (q) such that ‖p−x′‖ ≤ ‖p−cc(t)‖. It
follows that

dM,2(x) ≤
β

β − 1
‖p− x′‖

≤ β

β − 1
‖p− cc(t)‖

�

Theorem 5 states that when Algorithm 1 terminates
dM,2 ≤ βdP,k. We will draw a contradiction, depicted
in Figure 5, in which there must be some Voronoi cell or
Delaunay circumcircle containing at least k points in P
whenever there exists some x ∈ B such that dP,k(x)
is within a constant factor less than dM,2(x), as in
Lemma 4.

Figure 5: An illustration of the contradiction drawn
in Theorem 5 (top) in which ballx,Pk (gray disk) is
contained in the circumcircle of t (red disk). In this
case, Algorithm 1 would not have terminated, as an-
other Break move could be performed (bottom).

Theorem 5 Let P ⊂ B be a finite point set and τ ≥ 2,
k ≥ 1 be constants. Let M ⊂ B be a τ -well spaced set
such that |VorM (v) ∩ P | < k for all v ∈M .

If dP,k(cc(t)) > rad(t) for all t ∈ DelM then

dM,2 ≤ βdP,k

for a constant

β =
3− ϑτ
1− ϑτ

where ϑτ =

√
1− 1

τ2
.

Proof. Suppose, for the sake of contradiction, there ex-
ists a point x ∈ B such that dP,k(x) < 1

βdM,2(x). Let-

ting p, q ∈M , t ∈ DelM , and x′ ∈ ballx,Pk∩VorM (p, q)
be such that x ∈ VorM (p) and cc(t) ∈ Vor0M (p) ∩
Vor0M (q) as in Lemma 4 we have

dM,2(x) ≤ β

β − 1
‖p− cc(t)‖.

To simplify notation we will set the point o = p−q
2

at the origin. Because the Delaunay edge of t contain-
ing the points p, q and the Voronoi edge VorM (p, q) are
orthogonal we can bound the distance from x′ to the
circumcenter of t by the Pythagorean Theorem as fol-
lows.

‖x′ − cc(t)‖2 ≤ ‖cc(t)− o‖2

≤ ‖p− cc(t)‖2 − ‖p− o‖2

≤
(
1− 1

τ2

)
‖p− cc(t)‖2.

[
‖p − cc(t)‖

‖p‖
≤ τ

]
Noting that rad(t) = ‖p − cc(t)‖ we can now prove

that there are at least k points in P is the circumcircle
of t.

dP,k(cc(t)) ≤ dP,k(x
′) + ‖x′ − cc(t)‖ [dP,k is 1-Lipschitz]

≤ dP,k(x
′) + ‖p− cc(t)‖ϑτ [‖x′ − cc(t)‖ ≤ ϑτ ]

≤ 2dP,k(x) + ‖p− cc(t)‖ϑτ [dP,k(x
′
) ≤ 2dP,k(x)]

<
2

β
dM,2(x) + ‖p− cc(t)‖ϑτ

[
dP,k(x) <

1

β
dM,2(x)

]
≤
(

2

β − 1
+ ϑτ

)
‖p− cc(t)‖ [Lemma 4]

≤ ‖p− cc(t)‖.
[
β ≥

3 − ϑτ

1 − ϑτ

]
It follows that dP,k(cc(t)) ≤ ‖p − cc(t)‖ = rad(t),
a contradiction, as we assumed dP,k(cc(t)) > rad(t)
for all t ∈ DelM . We may therefore conclude that if
M ⊂ B is τ -well spaced, |VorM (v) ∩ P | < k for all
v ∈M , and dP,k(cc(t)) > rad(t) for all t ∈ DelM , then
dM,2 ≤ β dP,k. �

3.3 Main Theorem

Our final Theorem 6 states that when Algorithm 1 ter-
minates the output set M is τ -well spaced with strictly
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less than k points from P in each Voronoi cell and De-
launay circumcircle. It will then follow from Theorems 3
and 5 that the second nearest neighbor distance func-
tion dM,2 defined on the bounding box B = [0, 1)2 is
bounded above and below by the kth-nearest neighbor
function of the input set P ⊂ B.

Theorem 6 (Main Theorem) Let P ⊂ B be a finite
point set and τ ≥ 2, k ≥ 1 be constants. Let M0 be a
set of initial mesh vertices with dP,k(u0) ≤ λu0 for all
u0 ∈M0.

When kNNRefine(P,M0, τ, k) terminates the result-
ing ordered set of mesh vertices M ⊂ B is τ -well spaced,

|VorM (v) ∩ P | < k, dP,k(cc(t)) > rad(t)

for all v ∈M , t ∈ DelM , and

αdP,k ≤ dM,2 ≤ βdP,k

where α = τ−2
5τ−2 , β = 3−ϑτ

1−ϑτ and ϑτ =
√

1− 1
τ2 .

Proof. First note that each v ∈ M , t ∈ DelM
must satisfy aspect(VorM (v)) ≤ τ in order for
each internal Clean loop to complete. That is, if
aspect(VorM (v)) > τ kNNRefine(P,M0, τ, k) will
not have terminated, as another Clean procedure can
be performed.

In order for each outer Break loop to complete we
must have that |VorM (v) ∩ P | < k and dP,k(cc(t)) >
rad(t) for each v ∈ M , t ∈ DelM . Otherwise,
kNNRefine(P,M0, τ, k) will not have terminated, as
an additional Break procedure can be performed.

So, we may assume aspect(VorM (v)) ≤ τ ,
|VorM (v) ∩ P | < k, and dP,k(cc(t)) > rad(t) for all
v ∈ M , t ∈ DelM . As M is an indexed set, dP,k(u0) ≤
λu0 for all u0 ∈ M0, and aspect(VorM (v)) ≤ τ for all
v ∈M it follows from Theorem 3 that

αdP,k ≤ dM,2.

Moreover, because |VorM (v) ∩ P | < k, and
dP,k(cc(t)) > rad(t) for all v ∈ M, t ∈ DelM it follows
from Theorem 5 that

dM,2 ≤ βdP,k.

We may therefore conclude that in order for Algo-
rithm 1 to terminate the set M of mesh vertices con-
structed by kNNRefine(P,M0, τ, k) must satisfy

αdP,k ≤ dM,2 ≤ βdP,k

for constants α = τ−2
5τ−2 and β = 3−ϑτ

1−ϑτ . �

4 Point Location

At the heart of any Delaunay refinement algorithm is
an incremental Delaunay triangulation algorithm, con-
structing the Delaunay triangulation one vertex at a
time. The standard approach in computational geom-
etry for bounding the running time is to use random-
ization, yielding the randomized incremental algorithm.
However, Delaunay refinement does not permit such ar-
bitrary reordering of the points, because the points to be
added are discovered in the course of running the algo-
rithm. Thus, the original Chew and Ruppert algorithms
could have O(n2) running times. This was improved
by Miller [6] and later by Hudson et al. [4] who de-
veloped the so-called Sparse Refinement approach with
their Sparse Voronoi Refinement (SVR) algorithm.

As the algorithm needs to know the number of in-
put points contained in every Voronoi cell as well as the
number of points contained in every Delaunay circum-
ball, we will maintain two different point location data
structures. The first is a 2-way mapping between points
of P and the Voronoi cells (points of M). The second
is a 2-way association between the points of P and the
Delaunay circumballs. For each local update to the De-
launay triangulation induced by a single insertion, some
Voronoi cells are affected as well as some circumballs.
The sparse refinement approach always maintains some
guarantee on the quality of the underlying triangulation.

We adopt the vocabulary used by Hudson et al. [4]
when describing the algorithm in terms of Break and
Clean moves. In fact, we will do a strict subset of the
operations that would usually be performed by SVR.
The difference is that in SVR, if any input point from P
has not yet been added, then the algorithm will con-
tinue, whereas our algorithm will halt early if every
Voronoi cell and every Delaunay circumball contains
fewer than k points. Thus, it follows immediately that
our algorithm will also achieve a running time (and out-
put size) of O(n log ∆). Here, ∆ denotes the spread of
the input defined as the ratio of the largest to smallest
pairwise distances. We only need to observe that count-
ing the points in a Voronoi cell or Delaunay cicumball
is not more expensive than iterating through the list of
these points which happens anyway each time a Voronoi
cell changes or a Delaunay circumball is created or de-
stroyed.

5 Conclusions and future work

We have shown how a simple modification of Delau-
nay refinement solves the kth nearest neighbor sampling
problem. Several interesting open problems remain.

1. Does the algorithm work in Rd for d > 2? We
believe the answer is yes.
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2. Is it possible to eliminate the dependence on log(∆)
as was done for Voronoi refinement of points [7, 8]?

3. Is the size of the sample we produce asymptotically
optimal? Specifically, we would like to extend the
optimality theory of Ruppert [9].
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