
Size Complexity of Volume Meshes vs. Surface Meshes ∗

Benoı̂t Hudson Gary L. Miller Todd Phillips Don Sheehy
Toyota Technological Institute, Chicago Carnegie Mellon University

bhudson@tti-c.org {glmiller,tp517,dsheehy}@cs.cmu.edu

July 3, 2008. (Under Submission)

Abstract

Typical volume meshes in three dimensions are designed to conform to an underlying two-dimensional
surface mesh, with volume mesh element size growing larger away from the surface. The surface mesh
may be uniformly spaced or highly graded, and may have fine resolution due to extrinsic mesh size
concerns. When we desire that such a volume mesh have good aspect ratio, we require that some space-
filling scaffold vertices be inserted off the surface. We analyze the number of scaffold vertices in a setting
that encompasses many existing volume meshing algorithms. We show that under simple preconditions,
the number of scaffold vertices will be linear in the number of surface vertices.

1 Introduction

Given a surface mesh, many scientific computing and graphics applications will want to produce a volume
mesh. Conversely, to build a surface mesh from another description of an input geometry, one might tem-
porarily build a point location structure such as an oct-tree, which is a volume mesh. A natural question
arises: can we relate the size of the surface mesh to the size of the volume mesh? A volume mesh will ob-
viously have more vertices than the corresponding surface mesh, but in most settings, the spacing between
vertices should grow quickly away from the surface. Since the density of the volume mesh is driven only by
the surface, it is intuitive that the surface vertices should dominate in quantity. Our main result is to show
that given a surface mesh in a well-proportioned domain, the total number of vertices in the volume is linear
in the number of vertices on the surface. We will make this statement specific later as the Scaffold Theorem
(Theorem 3.1).

This result has immediate and important ramifications concerning the asymptotic work and space of a
large host of existing meshing and surface reconstruction algorithms. For example, in volume meshing, the
user may specify a closed surface and ask for its interior to be meshed. Typical algorithms enclose the surface
in a bounding box that contains the closed surface, incrementally add points until the surface is recovered and
the volume mesh has good quality, then strip away the exterior volume vertices (see Figure 1). The surface
and interior vertices are then returned to the user. This approach is widespread and is used for many two-,
three-, and higher-dimensional meshing algorithms [BEG94, ABE98, CDE+00, ELM+00, She98, MV00,
Üng04, MPW02, HMP06, CDR07]. The work and space complexity of these algorithms is output-sensitive
and depends on the number of exterior vertices, even though these vertices are transient. Our new analysis
is the first to control this exterior work. Since we show that the number of transient vertices is bounded by

∗This work was supported in part by the National Science Foundation under grants ACI 0086093, CCR-0085982 and CCR-
0122581.

1

Figure 1: Incremental mesh refinement algorithms first generate a mesh over a bounding box (left), then
remove the scaffold vertices and elements (center). Some applications may be interested in only the surface
mesh (right). The (one-dimensional) Lake Superior surface shown mesh has 530 surface vertices. The vol-
ume mesh shown has 1072 total volume vertices; 258 interior and 284 exterior. We offer the first theoretical
analysis of the costs of this scaffolding.

the surface vertices, this for the first time implies that these algorithms run output-sensitively with respect
to the true user-desired output.

In the rest of this work we make our results precise. A good deal of care is taken to ensure the generality
of these results, so that this analysis may be applied to many of the existing meshing algorithms with theo-
retical guarantees. Our proofs are in two parts. In the first part, we prove that if a good-quality volume mesh
respects a surface, the volume vertices outnumber the surface vertices by only a constant. Our definition of
respecting a surface is much looser than that of most prior work: the Voronoi cells of the surface vertices
must cover the surface, but there is no topological requirement. In addition, our definition of a surface is
extremely loose; it need not be manifold, or even connected. Additionally, our surface need not be d − 1 di-
mensional: for instance, it could be a curve in 3D. Our only requirements are that the surface have a bounded
number of connected components, and that each connected component of the surface have diameter within
a constant factor of the diameter of the bounding domain.

In the second part, we show how this result relates to standard concepts from mesh refinement and
surface reconstruction. In particular, we show that our result proves that a volume mesh of an ε-net of
a surface is only a constant factor larger than the surface. We also show that many prior quality mesh
refinement algorithms are susceptible to our analysis. This implies that they still run in the time (and memory
usage) bounds they claim, even when the volume actually meshed is larger than what the user asked to mesh.

2 Preliminary Geometric Definitions

In this paper, we assume there exists a surface S embedded in Rd. It need not be connected. Let D be
the minimum diameter of any connected component of S, where the diameter is the maximum Euclidean
distance between two points in the component. We require that the diameter of all other components, and
the diameter of S, be in Θ(D). Around S there is a compact and connected domain Ω with S ⊂ Ω ⊂ Rd.
Typically, Ω will be a box or a hypercube. The diameter of Ω must be in Θ(D).

Let Γd denote the volume of the unit ball in Rd. For x ∈ Rd and r ∈ R, let B(x, r) be the open ball
centered at x or radius r (whose volume is given by Γd rd.)

Suppose we have a set of points (vertices) M ⊂ Ω. A vertex-set M induces a local feature size function
fM : Ω→ R. At a point x ∈ Ω, the local feature size is the distance from x to the second-nearest vertex. We
frequently use the fact that fM is 1-Lipschitz: that is, fM(x) ≤ fM(y) + |x − y| for all x and y in Rd (this is
easily verified by the triangle inequality. At a vertex v ∈ M, the local feature size coincides with the distance

2

RM (v)

VM (u)

VM (v)

rM (v)

u

v

x

Figure 2: The Voronoi cells of two vertices u and v in a vertex-set M (not pictured). The radii of the
inner-ball and outer-ball of v are labeled. The point x is 0.9-medial.

to the nearest neighbour, which we denote NNM(v).
Given the vertex-set M, we denote by VM(v) the closed Voronoi cell of v: those points in Rd for which

no vertex in M is closer than is v. We identify two natural balls with v: the inner-ball bM(v) is the largest ball
centered at v that is contained within VM(v), while the outer-ball BM(v) is the smallest ball centered at v that
contains all of VM(v) ∩ Ω. We denote by rM(v) and RM(v) their respective radii (i.e. BM(v) = B(v,RM(v)).)
See Figure 2.

2.1 Well-spaced, Well-paced, and Medial Points

If there is a constant τ for which every v in a vertex-set M, has the property RM(v) ≤ τrM(v), then we say
that v is τ-well-spaced. Loosely, this implies that the VM(v) ∩ Ω is roundly shaped and that v is roughly
centered. Figure 3(right) shows a set of well-spaced points; contrast this with the vertices of Figure 4(left).

The problem of scaffolding a surface mesh with a volume mesh is that of finding a minimal well-spaced
superset (volume mesh) M of a vertex-set (surface mesh) N.

We will make use of a theorem from [MPS08]. First, we introduce some relevant definitions. The
boundaries of the Voronoi cells of each vertex in M form the medial axis of M. Miller et al [MPS08]
generalize this and say that a point x is θ-medial with respect to M if it lies near the medial axis, in the sense
that NNM(x) ≥ θ fM(x). Notice that whenever we had a point x to a set M, it will decrease the feature-size
fM in the vicinity of x. A key observation is that adding a θ-medial point will only decrease the feature-size
by a constant amount.

Given an arbitrary vertex-set N, and an ordered set of vertices E ≡ 〈v1, . . . , vk〉, we say that E is a θ-
well-paced extension of N if v1 is a θ-medial point of N, and each vi is a θ-medial point of N ∪ {v1 . . . vi−1}.
Informally, the name arises from the fact that the local feature size shrinks only slowly after each insertion.

Well-paced extensions are not well-spaced in general, but they have useful similarities to surface meshes.
We now state for completeness the Well-Pacing Theorem ([MPS08], Corollary 3).

Theorem 2.1 (Well-Pacing Theorem)
There is a constant C2.1, such that if N is a well-paced extension of a well-spaced set, then there exists a
well-spaced superset M ⊃ N, with |M| ≤ C2.1|N|.

(For Review Purposes: [MPS08] will appear in August. Appendix section C contains relevant proof
details.)

3

3 Scaffold Theorem

3.1 Overview

Our main result is the Scaffold Theorem 3.1, showing that given a volume mesh M with underlying surface
mesh N, |M| is bounded above by a constant times the size of |N|. (Informally, |M| . |N|.) Section 3.2
defines the formal setting in where Theorem applies.

The easiest proof would be to show that N can be written as a well-paced extension of a well-spaced
set, then we could simply apply the Well-Pacing Theorem 2.1 to directly bound |M|. This is difficult, so
instead we define the concept of a spacing-equivalent surface mesh N′, and show that one exists (Theorem
3.6). We can then construct a scaffolding volume mesh M′ for N′. The proof then proceeds as three
straightforward lemmas (3.3, 3.4, and 3.5). First, Lemma 3.3 shows that M . M′. This follows because
the surface meshes N and N′ are roughly equivalent, so then their associated scaffolding volume meshes
are also roughly equivalent. Next, Lemma 3.4 applies Theorem 2.1 to show that M′ . N′. Lastly, Lemma
3.5 shows that N′ . N and follows simply by the spacing-equivalence of N′. Putting these together yields
M . M′ . N′ . N. We now proceed with a formal proof.

3.2 Definitions: Scaffold Mesh and Seeded Surface Mesh

Suppose we are given a domain Ω as in Section 2. Further suppose we are given a “surface” S ⊂ Ω. We
require only that S is a closed subset. Suppose we have a finite vertex-set M ⊂ Ω. Define the surface vertices
as N = M ∩ S. To capture the notion that the sizing of this point set is solely due to the surface, we wish to
relate the Voronoi cells of M to the feature-size due to N. Formally, the input must satisfy the following two
conditions:

∃ α+ ∈ (0,∞), ∀ m ∈ M, RM(m) ≤ α+ fN(m) (1)

∃ α− ∈ (0, 1), ∀ m ∈ M, rM(m) ≥ α− fN(m) (2)

Note this implicitly implies that M is a well-spaced set of vertices, with R(m)/r(m) ≤ α+/α−. When M
and N satisfy conditions (1) and (2), we will say that M is an α-scaffolding volume mesh of the set N in Ω.
We further require that the surface vertices N cover S in the following sense:

S ⊂
⋃
n∈N

VM(n) (3)

Lastly, we require that the volume being filled is well-proportioned to the underlying surface. We ac-
complish this by requiring the existence of a seed N0 ⊂ N, The seed N0 must contain two vertices in each
connected component of S and must be a well-spaced set of points. Formally:

For each connected component T ⊂ S, ∃p, q ∈ N0 ∩ T , s.t. p , q (4)

N0 is ρ-well-spaced, i.e.∃ρ ∈ (1,∞)∀n ∈ N0, RN0(n) ≤ ρrN0(n) (5)

If a set N with scaffolding volume mesh M meets conditions (3)-(5), then we say that N is a seeded
surface mesh of S in Ω. Figures 3 and 4 illustrate these definitions.

3.3 Definitions: Spacing-Equivalent Sets

Suppose N ⊂ S is a vertex-set. Consider a vertex-set N′ ⊂ S that satisfies the following two conditions:

∃ β+ ∈ (0,∞), ∀ s ∈ S, fN′(s) ≤ β+ fN(s) (6)

∃ β− ∈ (0, β+), ∀ s ∈ S, fN′(s) ≥ β− fN(s) (7)

4

Figure 3: The definitions of Section 3.2 illustrated abstractly. Left, a surface S is composed of both black
shapes, with the domain Ω shaded. Center, vertices form a volume mesh M of Ω. The subset of surface
vertices N are shown in black, with the volume vertices in white. Note how the density of the volume
vertices is driven only by the density of surfaces vertices. Right, a possible seed N0, containing at least
two points from each component of the surface S. Notice the four points are well-spaced and have quality
Voronoi cells (shown in dashed lines).

We then say that such an N′ is β-spacing-equivalent to N on S. Theorem 3.6 will show that a seeded
surface mesh N (with seed N0) always has a β-spacing-equivalent set N′, with the additional property that
N′ is also a (1/3)-well-paced extension of the seed N0. For any vertex-set N′, it is possible to construct
(using off the shelf algorithms [Rup95]) a well-spaced superset of vertices M′ that is a γ-scaffolding volume
mesh, for some γ determined by the algorithm selected. This mesh M′ need not be aware of the surface at
all, since we will not require that N′ be a seeded surface mesh.

3.4 Scaffold Theorem Proof

Theorem 3.1 (Scaffold Theorem) Suppose M is an α-scaffolding volume mesh of N, and that N is a seeded
surface mesh. Then there exists a constant C3.1 depending only on α+ and α− such that:

|M| ≤ C3.1|N|

The main theorem will follow immediately from the existence of a spacing-equivalent surface mesh (The-
orem 3.6) and then composing Lemmas 3.3, 3.4, and 3.5. The proof begins with a small technical lemma
with the goal of extending spacing-equivalence to the entire domain Ω, since it is only guaranteed on S.

Lemma 3.2 Suppose N is a surface mesh as in Section 3.2 and N′ is a β-spacing-equivalent vertex-set,
then:

∀ x ∈ Ω, fN′(x) ≤ (1 + 2β+) fN(x)

Proof: Let x ∈ Ω. Let s ∈ S be a point on S with minimum Euclidean distance to x (s exists by the closure
of S.) Because N ⊂ S, we have fN(x) ≥ |x − s|. Combining this fact with the Lipschitz conditions and
condition (6), we find:

fN′(x) ≤ fN′(s) + |x − s| ≤ β+ fN(s) + |x − s| ≤ β+(fN(x) + |x − s|) + |x − s| ≤ (1 + 2β+) fN(x) (8)

Using the previous lemma, we can now show that an induced scaffold M′ of a spacing-equivalent set N′

is at least as large (up to a constant) as the scaffold M of the original set N. (A bound in the other direction
is also true with differing constants, but we will not need it.)

5

Figure 4: Examples of violations of the conditions in Section 3.2. Left, when the surface S has dispropor-
tionately small components, it will be too costly to fill the volume in a way that resolves these small surface
features. Note that no seed can exist in this example. An attempted seed is shown, but as the surface compo-
nents grow relatively small, there is no way to fit two points on each component in a way that is well-spaced.
Center, this volume mesh is not a scaffold mesh, because the sizing is not driven by the surface. The sink in
the lower-center could contain arbitrarily many volume vertices. Note how this violates equation (2). Right,
If the surface vertices do not cover S as in equation 3, then there could be a small surface feature requiring
many volume vertices to resolve without having to add any more surface vertices. Note that a seed still
exists in this example.

Lemma 3.3 Suppose M is an α-scaffolding volume mesh of N as in Section 3.2, and suppose M′ is a γ-
scaffolding volume mesh for a β-spacing-equivalent surface mesh N′, then:

|M| ≤ C3.3|M′| where C3.3 =

(
2(1 + 2β+)γ+

α−γ−

)d

Proof: The proof is a packing argument showing that if we partition the vertices M into the Voronoi cells
VM′ , no cell receives more than a constant-sized portion of M. There are disjoint empty balls around the
vertices of M with radii that are lower bounded by fN which lower bounds fN′ (by Lemma 3.2). But fN′

also upper bounds the size of the Voronoi cells of M′ because it is a γ-scaffolding volume mesh of N′. A
detailed proof is given in the appendix.

Lemma 3.4 Suppose M′ is a γ-scaffolding volume mesh of a N′, and that N′ is a well-paced extension of a
well-spaced seed, then:

|M′| ≤ C3.4|N′|

Proof: This is a direct application of the Well-Pacing Theorem 2.1. The constant C3.4 will be inversely
proportional to γ−.

Lemma 3.5 Suppose N′ is β-spacing-equivalent to a seeded surface mesh N with α-scaffolding volume
mesh M, then we have:

|N′| ≤ C3.5|N| where C3.5 =

(
4α+

α−β−

)d

Proof: Lemma 3.5 follows from a packing argument and the proof is similar Lemma 3.3. See Appendix
for details.

6

3.5 Existence of Spacing-Equivalent Sets

Theorem 3.6 (Spacing-Equivalent Existence) Suppose N is a seeded surface mesh of S in Ω (with seed
N0) as specified by Section 3.2. Then there exists a β-spacing-equivalent N′ that is a (1/3)-well-paced
extension of N0, for any β+ ∈ (0, 1] and β− ∈ (0, β+/17).

Proof:
Let N, N0, S, β+, and β− be given satisfying the hypothesis of the theorem. Proof is by construction

according to the following algorithm:
Begin with the seed N0 and a counter i, initially i = 0.
While ∃x ∈ S such that fNi(x) > β+ fN(x), let p ∈ Ni such that x ∈ VN′(p):

1. If x < bNi(p). Set Ni+1 = {x} ∪ Ni.

2. If x ∈ bNi(p). Let y ∈ ∂bNi(p) ∩ S. (Note y exists by 4.) Set Ni+1 = {y} ∪ Ni.

3. Increment i.

The finiteness of N guarantees this will terminate at some index I. Take N′ = NI .
First, we claim that any points added to Ni is (1/3)-medial wrt Ni. Consider a point x on any iteration i

of the loop. Let q ∈ Ni be the nearest neighbor of p. If x is inserted in Step 1.:

fNi(x) ≤ |x − p| + fNi(p) = |x − p| + 2rNi(p) ≤ 3|x − p| = 3NNNi(x)

so x is (1/3)-medial. If y is inserted in Step 2., we have:

fNi(y) ≤ |y − p| + fNi(p) = 3|y − p| = 3NNNi(y)

so y is (1/3)-medial.
Thus N′ is a well-paced extension of the well-spaced N0.
It remains to show that N′ is β-spacing-equivalent to N, namely that conditions (6) and (7) hold.
Clearly, the upper bound condition (6) holds by construction. Either there are no more violations of (6)

or N′ = S, but the latter would clearly violate finiteness of N. The proof of condition (7) is more subtle but
follows similar arguments from previous work [Rup95]. We will use the following lemma to show condition
(7).

Lemma 3.7 Suppose x ∈ N′ is inserted at iteration i (i.e. x ∈ Ni+1 − Ni), then:

NNNi(x) >
β+

7
fN(x)

Note that this Lemma would imply the immediate corollary:

Corollary 3.8

∀x ∈ N′, fN′(x) >
β+

8
fN(x)

Proof of corollary: Let x ∈ N′ (iteration i) be given and take y ∈ N′ (iteration j) s.t. |x − y| = NNN′(x).
If i > j , then we simply apply the lemma directly:

NNN′(x) = NNNi(x) >
β+

7
fN(x) >

β+

8
fN(x)

If i < j, then we use Lipschitz of fN and apply the lemma to y:

fN(x) ≤ fN(y) + |x − y| <
7
β+

NNN j(y) + |x − y| ≤
7
β+
|x − y| + |x − y| <

8
β+
|x − y| =

8
β+

NNN′(x)

7

We return to proving Lemma 3.7. Proof is by induction. Note that the corollary always holds inductively
whenever the lemma does. For x ∈ N0, the lemma clearly holds since N0 ⊂ N. Let x be a point added in
Case (1) at iteration i. The lemma follows immediately since x was selected as a point where fN was large
and x was (1/3)-medial:

NNNi(x) ≥
1
3

fNi(x) >
β+

3
fN(x) >

β+

7
fN(x)

.
Let y be a point added in Case (2) at iteration i relative to some x ∈ S and p ∈ Ni. Let q be the nearest

neighbor of p in Ni. We will use the Lipschitz condition on fN and fNi , as well as applying the corollary as
an inductive hypothesis:

fN(y) ≤ fN(x) + |x − y| <
1
β+

fNi(x) + |x − y| (9)

≤
1
β+

fNi(y) +
1
β+
|x − y| + |x − y| =

1
β+

fNi(y) + (1 +
1
β+

)|x − y| (10)

≤
1
β+
|y − q| + (1 +

1
β+

)2rNi(p) (11)

≤
1
β+

3rNi(p) + (1 +
1
β+

)2rNi(p) = (2 +
5
β+

)NNNi(y) ≤
7
β+

NNNi(y) (12)

Having proved the lemma and corollary, we recall that condition (7) must hold for any x ∈ S. Let x ∈ S
be given and take v ∈ N′ such that x ∈ VN′(v). then. We first notice that fN′(x) ≥ rN′(p). We use Lipschitz
property of fN and apply the corollary at v:

fN(x) ≤ fN(v)+ |x− v| <
8
β+

fN′(v)+ |x− v| =
16
β+

rN′(v)+ |x− v| ≤
16
β+

fN′(x)+ fN′(x) ≤
17
β+

fN′(x) <
1
β−

fN′(x)

4 Algorithms

Our result assumes that the surface S, the volume mesh M, the surface mesh N, and the seed N0 were all
given. Ideally, we should not need to know so much, and instead we would have an algorithm to fill in the
unknowns. There are many mesh refinement algorithms in the literature that need only know either S or N.
Provided the seed exists—it need not be known—said mesh refinement algorithms will produce an output
that matches the requirements of the Scaffold Theorem 3.1: |M| ∈ Θ(|N|). The surprising conclusion is that
in terms of runtime and output size, when the ambient dimension is bounded, it is asymptotically free to
mesh a volume rather than meshing only a surface—again, provided the surface has a seed.

4.1 Meshing a surface sample

The simplest application is to take as input a set of points N that all lie on a manifold surface (for example,
the famous Stanford Bunny model), and construct from it the volume mesh M. This is a useful endeavor
if we are to animate the model. To generate the volume mesh, we use a Voronoi (or Delaunay) refinement
algorithm. The volume mesher first wraps the points of N into an appropriate bounding box, of diameter
only a constant factor larger than the diameter of N. It initializes M with N, then finds a vertex v with
RM(v) ≥ τrM(v), and identifies some point p that is in the Voronoi cell of v, but far from it: |vp| ≤ |up| for
all u ∈ M, but |vp| ≥ τrM(v). The algorithm then adds p to M, and continues this process until M is τ-well-
spaced. A large number of algorithms implement this process (e.g. [Rup95, She98, HPU05, HMP06]).

Our theorem requires that the surface is covered by the Voronoi cells of just the surface vertices—that
is, no point of S lies in the Voronoi cell of a vertex in M\N. Under certain assumptions on N, we can prove

8

this holds. We require that there be some ε such that for all x, there is a vertex v ∈ N such that |vx| ≤ ε; but
for all u ∈ N, all other vertices v ∈ N lie at distance |uv| ≥ ε/2. In other words, N is an ε-net of S.

Lemma 4.1 Consider a point x ∈ S whose nearest neighbour in N is v. If the volume mesh M is computed
with τ > 4, then x remains in the Voronoi cell VM(v).

Proof: For any vertex u created during refinement, there is some u′ that created u: when u was inserted, its
nearest neighbour was u′, and |uu′| ≥ τrM(u′). In other words, created vertices have nearest neighbour larger
than the distance between the closest pair of points in N. The closest pair must be at least ε/2 from each
other, by assumption, so any u ∈ M\N has rM(u) ≥ τε/4. Return now to consider x. For a contradiction, we
assume that the nearest neighbour of x in M is a created vertex u. Then |ux| < |vx|. Given that |vx| ≤ ε, we
know that |uv| ≤ 2ε. Clearly, rM(u) can be no larger than half the distance to any vertex: rM(u) ≤ |uv|/2 ≤ ε.
Remembering the previous bound, we conclude that ε ≥ τε/4, or equivalently, τ ≤ 4, a contradiction.

As a corollary, this means that every point x ∈ S is in the Voronoi cell of some vertex in N, and therefore
Theorem 3.1 holds. Then |M| ∈ O(|N|), assuming N is an ε-net of S, and that τ > 4. But N is input, so
n = |N|: the volume mesh contains a number of vertices only linear in the size of the input! We can relax the
requirement on τ by remembering that a τ-well-spaced mesh and a τ′-well-spaced mesh have size within a
constant factor of each other, where the constant is a function of τ, τ′. This lets us conclude:

Corollary 4.2 A τ-well-spaced mesh of an ε-net has size O(n) for any τ and ε.

4.2 Meshing a surface

In mesh refinement for engineering and scientific applications, the input is typically specified as a piecewise
linear complex or a piecewise smooth complex, made up of a collection of vertices, segments or curves, and
polygons or smooth surfaces (and so on, in higher dimension). As in the prior subsection, we assume the
algorithm first places a box around the input complex, then iteratively inserts vertices. In the face of linear
or smooth features, this requires greater care than before although the details are nearly irrelevant to our
results here. The mesher continues adding vertices until two conditions are met: that the vertices are well-
spaced, and that the Delaunay triangulation “respects” the input complex. In the case of piecewise linear
complexes, we say a triangulation respects it if each linear facet appears as the union of a set of Delaunay
simplices [Rup95, She98]. In other words, the Voronoi diagram of surface vertices covers the input. For
smooth complexes [CDR07, RY07], respecting a surface requires even more than the covering condition.

The analysis of algorithms that mesh complexes typically rely on a global function called the local fea-
ture size, denoted lfs, which represents how much refinement will be necessary locally. For our purposes,
we require that the local feature size be defined on S, and extended to the entire domain via the minimum
1-Lipschitz function: at x ∈ Ω\S, lfs(x) ≡ miny∈S lfs(y) + |xy|. This is within a factor of three of Ruppert’s
more traditional local feature size function define on linear complexes, but extends more easily to smooth
complexes. Most mesh refinement algorithms arising from the computational geometry community guaran-
tee that vertices are not too closely packed: at every v ∈ M, rM(v) ≥ γ− lfs(v). For our purposes here, we
also need the algorithm to guarantee that every vertex v must have RM(v) ≤ γ+ lfs(v), and every point x must
have some neighbour v with |vx| ≤ γ+ lfs(x). Parallel mesh refinement algorithms happen to require this
for fast parallel runtime [STÜ07, HMP07]. These conditions are extremely reminiscent of conditions (1)
and (2), assuming fN and lfs are related.

Lemma 4.3 For all x ∈ Ω, fN(x) ∈ [δ− lfs(x), δ+ lfs(x)].

Proof: For the lower bound on fN , consider a point x in the domain. It lies in the Voronoi cell of some vertex
v ∈ M. Since local feature size is 1-Lipschitz, lfs(x) ≤ lfs(v) + |vx|. By the assumption on the algorithm,

9

rM(v) ≥ γ− lfs(v). We also know that the second-nearest vertex to x is at least as far as max(rM(v), |vx|).
Thus we know lfs(x) ≤ (1 + 1/γ−) fM(x). Finally, removing vertices can only increase f : fM(x) ≤ fN(x),
which proves that fN(x) ≥ γ−

1+γ− lfs(x). Then δ− = γ−

1+γ− .
For the upper bound, first consider a vertex u ∈ N. Because the Voronoi cells of N cover S, we know

that u has a neighbour u′ on N with |uu′| ≤ 2RM(u). The algorithm guarantees RM(u) ≤ γ+ lfs(u). Thus
fN(u) ≤ 2γ+ lfs(u). Next, consider a a point y ∈ S whose nearest neighbour is u. We know that fN(y) ≤
fN(u) + |uy| ≤ 2γ+ lfs(u) + |uy|. At u, the Lipschitz condition bounds lfs(u) ≤ lfs(y) + |uy|. Finally, u is the
nearest vertex to y, but there must be some vertex within distance γ+ lfs(y), which means |uy| ≤ γ+ lfs(y).
Thus fN(y) ≤ 2γ+ lfs(y) + 2|uy| ≤ 4γ+ lfs(y). We can now consider an arbitrary point x. Let y be the point
of S for which lfs(x) = lfs(y) + |xy|. By the Lipschitz condition on fN , we know fN(x) ≤ fN(y) + |xy|. We
just proved that fN(y) ≤ 4γ+ lfs(y). By definition, lfs(y) ≤ lfs(x), so we know fN(y) ≤ 4γ+ lfs(x). Equally,
|xy| ≤ lfs(x). Therefore, fN(x) ≤ (1 + 4γ+) lfs(x). Then δ+ = (1 + 4γ+).

Corollary 4.4 When presented with an input piecewise smooth or piecewise linear complex for which there
exists a seed, a quality mesh refinement algorithms that outputs a mesh of optimal size creates a volume
mesh M and a surface mesh N, with |M| ∈ O(|N|).

5 Conclusions

Accounting for scaffolding costs is a pressing question in the timing and output-size analysis of many mesh
generation algorithms that are used in practice. The Scaffold Theorem shows that these costs are not dom-
inant, as has so often been assumed without proof in prior work. This analysis is made applicable to many
algorithms by abstracting the meshing problem to that of simply generating a minimal well-spaced superset
of a vertex-set. This ignores many of the topological and geometric intricacies that make meshing algo-
rithms difficult to analyze, while still preserving enough distribution information about the vertices to make
meaningful statements on mesh-size.

Reflecting on the analysis, the surface vertices are paramount and the underlying surface itself plays
only a small role in controlling the size of the volume mesh, It is then theoretically of interest to simply
consider the size of a minimal well-spaced superset M of a vertex-set N ⊂ Ω. It is well-established that:

|M| ∈ Θ
(∫
Ω

1
f d
N

)

A worst case upper bound on this integral is O(|N| log∆), where ∆ is the spread of the domain; the ratio of
the diameter of Ω to the closest pair in N. In general, this bears no combinatorial relationship to |N|. The
Scaffold Theorem provides sufficient conditions (that are highly relevant in practice) for a setting wherein
|M| is linear in |N|. But these conditions are nowhere near necessary. It is an interesting question whether
there exist simple necessary and sufficient conditions that will combinatorially bound |M| when N is given
arbitrarily.

References

[ABE98] Nina Amenta, Marshall Bern, and David Eppstein. The crust and the β-skeleton: Combinatorial
curve reconstruction. Graphical models and image processing: GMIP, 60(2), 1998.

[BEG94] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh Generation. Journal
of Computer and System Sciences, 48(3):384–409, June 1994.

10

[CDE+00] Siu-Wing Cheng, Tamal Krishna Dey, Herbert Edelsbrunner, Michael A. Facello, and Shang-
Hua Teng. Sliver Exudation. Journal of the ACM, 47(5):883–904, September 2000.

[CDR07] Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement for piecewise
smooth complexes. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1096–1105, Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[ELM+00] Herbert Edelsbrunner, Xiang-Yang Li, Gary L. Miller, Andreas Stathopoulos, Dafna Talmor,
Shang-Hua Teng, Alper Üngör, and Noel Walkington. Smoothing and cleaning up slivers. In
STOC, pages 273–277, 2000.

[HMP06] Benoı̂t Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. In Proceedings
of the 15th International Meshing Roundtable, pages 339–356, Birmingham, Alabama, 2006.
Long version available as Carnegie Mellon University Technical Report CMU-CS-06-132.

[HMP07] Benoı̂t Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Refinement. In
19th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 339–347,
San Diego, June 2007.

[HPU05] Sariel Har-Peled and Alper Üngör. A Time-Optimal Delaunay Refinement Algorithm in Two
Dimensions. In Symposium on Computational Geometry, 2005.

[Moo95] Doug Moore. The cost of balancing generalized quadtrees. In SMA ’95: Proceedings of the
Third Symposium on Solid Modeling and Applications, pages 305–312, 1995.

[MPS08] Gary L. Miller, Todd Phillips, and Donald Sheehy. Linear-size meshes. In Canadian Conference
on Computational Geometry, 2008. To appear.

[MPW02] Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully Incremental 3D Delaunay Refine-
ment Mesh Generation. In Eleventh International Meshing Roundtable, pages 75–86, Ithaca,
New York, September 2002. Sandia National Laboratories.

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimensions. SIAM
J. Comput., 29(4):1334–1370 (electronic), 2000.

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.
Algorithms, 18(3):548–585, 1995. Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA) (Austin, TX, 1993).

[RY07] Laurent Rineau and Mariette Yvinec. Meshing 3D domains bounded by piecewise smooth
surfaces. In 16th International Meshing Roundtable, pages 442–460, 2007.

[She98] Jonathan Richard Shewchuk. Tetrahedral Mesh Generation by Delaunay Refinement. In Pro-
ceedings of the Fourteenth Annual Symposium on Computational Geometry, pages 86–95, Min-
neapolis, Minnesota, June 1998. Association for Computing Machinery.

[STÜ07] Daniel Spielman, Shang-Hua Teng, and Alper Üngör. Parallel Delaunay refinement: Algorithms
and analyses. IJCGA, 17:1–30, 2007.

[Üng04] Alper Üngör. Off-centers: A new type of steiner points for computing size-optimal guaranteed-
quality delaunay triangulations. In Proceedings of LATIN, 2004.

11

A Proof of Lemma 3.3

Lemma 3.3 Suppose M is an α-scaffolding volume mesh of N as in Section 3.2, and suppose M′ is a
γ-scaffolding volume mesh for a β-spacing-equivalent surface mesh N′, then:

|M| ≤ C3.3|M′| where C3.3 =

(
2(1 + 2β+)γ+

α−γ−

)d

Proof:
To form the packing argument, we will first lower-bound the size of the bM(v) for v ∈ M, which we

know are disjoint. Let u ∈ M′ be given. Define the children C(u) = M ∩VM′(u), those vertices of M that are
partitioned into u’s Voronoi cell. By condition (2) and Lemma 3.2

∀v ∈ M, rM(v) ≥ α− fN(v) ≥
α−

1 + 2β+
fN′(v) (13)

Since N′ ⊂ M′, fN′ ≥ fM′ everywhere.
Since v ∈ VM′(u), the definition of fM′ implies that fM′(v) ≥ rM′(u).
Furthermore, since M is γ-scaffolding, conditions (1) and (2) yield rM′(u) ≥ γ

−

γ+RM′(u)
Combining these three facts into Equation (13) yields:

∀ v ∈ C(u), rM(v) ≥
α−γ−

(1 + 2β+)γ+
RM′(u) (14)

Let r = minv∈C(u) rM(v). Clearly B(v, r) ⊂ bM(v), so the set {B(v, r) | v ∈ C(u)} are all disjoint.
We can now pack these disjoint balls into one large ball around u. Since v ∈ VM′(u) ⊂ BM′(u), we have

B(v, r) ⊂ B(u,RM′(u) + r).
Using | · | to denote the volume of a set, we have:

Γd(RM′(u) + r)d = |B(u,RM′(u) + r)| ≥ |
⋃

v∈C(u)

B(v, r)| =
∑

v∈C(u)

|B(v, r)| = |C(u)|Γd rd (15)

From which it follows that (RM′(u) + r)d ≥ |C(u)|rd.
If r > RM′(u), then the above simply reduces to |C(u)| ≤ 2d by substituting out RM′(u).
If r ≤ RM′(u), then we apply (14) and obtain:

2dRM′(u)d ≥ |C(u)|
(
α−γ−

(1 + 2β+)γ+

)d

RM′(u)d or more simply: |C(u)| ≤
(
2(1 + 2β+)γ+

α−γ−

)d

(16)

Note that the second case is always a worse bound on |C(u)|, so we have |C(u)| ≤ C3.3; plugging in to
|M| ≤

∑
u∈M′ |C(u)| will finish the proof.

B Proof of Lemma 3.5

Lemma 3.5 Suppose N′ is β-spacing-equivalent to a seeded surface mesh N with α-scaffolding volume
mesh M, then we have:

|N′| ≤ C3.5|N| where C3.5 =

(
4α+

α−β−

)d

Proof:
We will use the Voronoi cells of N to cover S. Then we distribute the vertices of N′ into these cells,

and claim that no cell of N contains more than a constant number of points from N′. Note this packing uses
condition (3) to guarantee that N′ = ∪n∈N N′ ∩ VM(n).

12

To form the packing argument, we will first lower-bound the size of the bN′(v) for v ∈ N′, which we
know are disjoint.

Let u ∈ N. Define the children of C(u) = N′ ∩ VM(u), those vertices of N′ that are partitioned into u’s
Voronoi cell.

Let v ∈ C(u). We note by definition that for v ∈ N′, rN′(v) = 1/2 fN′(v). Utilizing condition (7), we then
have:

rN′(v) ≥
β−

2
fN(v)

Since v ∈ C(u) ⊂ VN(u), we have fN(v) ≥ rN(u), so we are reduced to:

rN′(v) ≥
β−

2
rN(u)

Lastly, conditions (1) and (2) yield rN(u) ≥ α
−

α+RN(u). Combining, we find:

rN′(v) ≥
β−α−

2α+
RN(u) (17)

Let r = minv∈C(u) rN′(v). Clearly B(v, r) ⊂ bN′(v), and the B(v, r) are all disjoint for v ∈ C(u). We
can now pack the disjoint balls into one large ball around u. Since v ∈ VN(u) ⊂ BN(u), we have B(v, r) ⊂
B(u,RN(u) + r).

Using | · | to denote the volume of a set, we have:

Γd(RN(u) + r)d = |B(u,RN(u) + r)| ≥

∣∣∣∣∣∣ ⋃
v∈C(u)

B(v, r)

∣∣∣∣∣∣ = ∑
v∈C(u)

|B(v, r)| = |C(u)|Γd rd (18)

So it follows:
(RN(u) + r)d ≥ |C(u)|rd (19)

If r > RN(u), then the above simply reduces to 2d ≥ |C(u)| by substituting for RN(u). If r ≤ RN(u), then
we apply (17) and obtain:

2dRN(u)d ≥ |C(u)|
(
β−α−

2α+

)d

RN(u)d

or simply:

|C(u)| ≤
(

4α+

β−α−

)d

Note that the second bound is always worse, so we have |C(u)| ≤ C3.5, so plugging in to |N′| ≤
∑

u∈N |C(u)|
will finish the proof.

C Proof of Well-Paced Theorem

This is a reproduction of a portion of [MPS08] that will appear in August at CCCG08, provided here for the
convenience of interested reviewers.

The cost of going from well-paced to well-spaced
Running a meshing algorithm on a point set P will add Steiner points until the resulting set P′ is well-

spaced. The cost of cleaning a point set P, denoted by Cost(P) is defined as |P′|, the size of the well-
spaced output. The result of this section generalizes previous work on the linear cost of balancing quad
trees [Moo95].

Theorem C.1 If P is a θ-well-paced extension of Q, then Cost(Q ∪ P) = O(Cost(Q) + |P|).

13

Proof: The proof will be by induction on n = |P|. Let lfs(i) be the local feature size function induced
by Q ∪ {p1, . . . , pi}. Let Ψi = c1

∫
x∈Ω

1
lfs(i)(x)d dx, where c1 is the constant from the upper bound in Theo-

rem 1. In general, c1 will depend on the particular meshing algorithm used. Theorem 1 says that Cost(Q ∪
{p1, . . . , pi}) ≤ Ψi and Ψ0 = O(Cost(Q)), the base of our induction.

By induction, we assume Ψn−1 ≤ Cost(Q) + c2(n − 1) for some constant c2. It will suffice to show that
Ψn − Ψn−1 < c2. We can split the Ruppert sizing integral as follows.

Ψn = c1

∫
x∈Ω

1
lfs(n)(x)d

dx (20)

≤ Ψn−1 + c1

∫
x∈U

1
lfs(n)(x)d

−
1

lfs(n−1)(x)d
dx (21)

where U ⊆ Ω is the set of all points for which the local feature size was changed by the insertion of pn. Let
R = rpn . The following two inequalities hold for all x ∈ U, the first is trivial and the second follows from
the definition of well-paced points.

(n)
lfs(x) ≥ |pn − x|, and (22)

(n−1)
lfs (x) ≤ |pn − x| +

R
θ
. (23)

We use these inequalities to compute the integral above using spherical coordinates. Since the integrand is
positive everywhere, we can upper bound the integral by integrating over all of Rd instead of just U:

Ψn−Ψn−1 ≤ c1

∫
x∈U

1
(|x|)d −

1
(|x| + R

θ)d
dV, (24)

≤ c1

∫ ∞

0

∫
S r

 1
rd −

1
(r + R

θ)d

 dAdr, (25)

≤ c1sd

∫ ∞

0

 1
rd −

1
(r + R

θ)d

 rd−1dr, (26)

where S r is the sphere of radius r and sd is the surface area of the unit d-sphere. In the ball of radius R
2

around pn the lfs is at least R
2 , so the contribution of this region is to Ψn at most some constant c3.

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

R
2

 1
rd −

1
(r+ R

θ)d

rd−1dr (27)

By the change variable yR/θ = r and simplifying we get:

Ψn−Ψn−1 ≤ c3+ c1sd

∫ ∞

θ
2

(
(y + 1)d − yd

y(y + 1)d

)
dy (28)

≤ c3+ c1sd

d−1∑
i=0

(
d
i

) ∫ ∞

θ
2

yi

yd+1 dy (29)

≤ c3 + c1sdd2
(

d
d/2

)
(2/θ)d (30)

The last inequality follows from the fact that each integral is bounded by d(2/θ)d. Choosing c2 larger than
this constant completes the proof.

One interpretation of this theorem is that the amortized increase in the cost of cleaning a point set is
constant if you add a θ-medial point.

14

Corollary C.2 If Q is a well-spaced point set and P is a well-paced extension then Cost(Q ∪ P) = O(|Q| +
|P|).

Proof: Follows from the above theorem and the linear cost of cleaning points that are already well-spaced.

15

