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ABSTRACT

We apply ideas from mesh generation to improve the time
and space complexities of computing the full persistent ho-
mological information associated with a point cloud P in
Euclidean space R

d. Classical approaches rely on the Čech,
Rips, α-complex, or witness complex filtrations of P , whose
complexities scale up very badly with d. For instance, the
α-complex filtration incurs the nΩ(d) size of the Delaunay
triangulation, where n is the size of P . The common al-
ternative is to truncate the filtrations when the sizes of the
complexes become prohibitive, possibly before discovering
the most relevant topological features. In this paper we pro-
pose a new collection of filtrations, based on the Delaunay
triangulation of a carefully-chosen superset of P , whose sizes

are reduced to 2O(d2)n. Our filtrations interleave multiplica-
tively with the family of offsets of P , so that the persistence

diagram of P can be approximated in 2O(d2)n3 time in the-
ory, with a near-linear observed running time in practice.
Thus, our approach remains tractable in medium dimen-
sions, say 4 to 10.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-

tions on discrete structures, Geometrical problems and com-

putations
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1. INTRODUCTION
The goal of topological inference is to infer topological

invariants of a space given only a sample of the space. In
the setting of geometric points, it is natural to consider the
point set at different scales by blowing the points up to balls.
Persistent homology is a powerful tool for understanding the
topological structure of a point cloud across these different
scales. Given a point cloud P in Euclidean space R

d, one
can build a simplicial complex over P , then associate a time
of appearance t(σ) to each simplex σ (full-dimensional or
lower-dimensional) in the complex. This defines a nested
family of simplicial complexes indexed by time, known as a
filtration. As simplices are added to the complex, the set of
topological features (connected components, holes, tunnels,
voids, etc.) changes: new ones are created, and old ones
destroyed. The persistence algorithm [13, 26] takes the fil-
tration and produces a persistence diagram that encodes the
lifespans of these topological features. Given an appropri-
ate choice of filtration, one can prove that short-lived fea-
tures correspond to sampling noise, while long-lived features
correspond to relevant topological structures underlying the
input set.

Several filtrations have been used with success in the past,
including the α-complex [12] and witness complex [10, 11]
filtrations, which are based on the Delaunay triangulation of
P or an approximation of it, and the Čech [14] and Vietoris-
Rips [25] filtrations, which are derived from the nerves of
collections of congruent balls centered at the data points.
The ability of these filtrations to capture the homological in-
formation associated with a point cloud is certified by a well-
founded theory [3], which largely explains their success from
a theoretical point of view. In practice however, the cost to
build them makes their use prohibitive, even in medium di-
mensions, say 4 to 10. When α becomes large, the size of



the α-complex approaches that of the Delaunay triangula-
tion: nΩ(d) for n data points in d dimensions, even for some
relatively “nice” inputs [15, 16]. The sizes of the Čech, Rips
and (relaxed) witness complexes grow even more quickly, as

2Ω(n).
To avoid this issue, researchers usually resort to truncat-

ing the filtrations at a prescribed size limit. This truncation
is equivalent to looking at the data at small scales only, and
can make the algorithm miss relevant structures at larger
scales. A typical scenario, inspired from [17], is described in
Figure 1 (left): it consists of a point cloud sampled evenly
from a helicoidal curve drawn on the Clifford torus in R

4.
In this case, the point cloud admits at least three candidate
underlying spaces: at a small scale, the curve; at a larger
scale, the torus; and at an even larger scale, the 3-sphere of
radius

√
2 on which the Clifford torus is naturally embed-

ded. One might also add the point cloud itself and R
4 at

either ends of the spectrum.
In order to analyze such data sets at different scales using

only truncated filtrations, Chazal and Oudot [6] proposed a
landmarking strategy in the spirit of [17], which maintains
a growing subset of the data points, on which the simpli-
cial complexes are built. However, their approach produces
a weaker form of data representation than persistence dia-
grams, which does not explicitly correlate the features visible
at different scales. As a result, they can get false positives
when retrieving the set of persistent topological features.
See e.g. [17, Fig. 7] for an example.

A simple algorithm. In this paper, we use techniques from
finite element mesh generation to build a complex on the
input set with some extra vertices that is guaranteed to have
small size. We then order the simplices in a natural and
easy to compute way in order to generate a filtration. This
complex can then be input directly to standard algorithms to
discover the persistent topological features. In its simplest
form our algorithm can be implemented using both the mesh
generator and the persistence computation as black boxes.
Thus, the only new code to implement is the filtering of the
mesh.

Consequently, the work in this paper is primarily in the
analysis of the theoretical guarantees. We show how vary-
ing the mesh generation techniques, one can get different
guarantees with respect to the size of the complex and the
tightness of the approximation.

Enter Sparse Voronoi Refinement. We preprocess the point
cloud P using techniques inspired by Delaunay refinement,
iteratively inserting new points of R

d called Steiner points

into P until some quality criterion is met. Here, quality will
be measured by the aspect ratios of the Voronoi cells, so as to
guarantee that the size of the Delaunay triangulation of the

augmented set P ∪ S drops down to 2O(d2)(n + |S|) when
the criterion is met. Furthermore, the number of Steiner
points needed to meet the criterion is 2O(d log d)n, which

makes the size of the final triangulation only 2O(d2)n. In
order to realize the benefits of the refined mesh, we compute
it without first constructing the Delaunay triangulation, as
is possible using the Sparse Voronoi Refinement (Svr) al-
gorithm [19]. In addition, we partition the input into well-

paced sets which guarantees that the size of the filtration

stays linear in n, modulo a constant factor that depends
exponentially on d [21].

Once the augmented point cloud P ∪ S has been com-
puted, we order the simplices of its Delaunay triangulation
according to a filter t : Del(P ∪ S) → R. Several different
filters are analyzed in the paper, yielding filtrations with
different properties: some are easier to build, others come
with better approximation guarantees. The choice of a par-
ticular filter depends on the application considered and is
therefore left to the user. Note that all our filters are based
on distances to the input point cloud P , as illustrated in
Figure 2. This enables us to show that the corresponding
filtrations are interleaved on a logarithmic scale with the fil-
tration of the offsets of P , in the sense of [4], from which
we can deduce that they produce accurate (approximate)
persistence diagrams. Computing the persistence diagram
takes time cubic in the number of simplices and thus domi-

nates our worst-case 2O(d2)n3 overall runtime. This bound,
though large, is still a significant improvement over nΩ(d).
Moreover, in practice, the persistence diagram computation

takes near-linear time (on an input with 2O(d2)n simplices),
which makes our approach tractable in small to medium
dimensions (4-10) for moderate input sizes (thousands to
tens of thousands of points). A preliminary implementation
bears out these predictions (see Section 6).

Layout of the paper. In Section 2 we recall the necessary
background on Sparse Voronoi Refinement and on persistent
homology. The rest of the paper is devoted to the descrip-
tion of our approach. We first present a simplified version in
Section 3 that produces a filtration that is log(ρ)-interleaved
with the offsets filtration of P , for some constant ρ ≥ 2. The

size of this filtration is 2O(d2)n log(∆(P )), where ∆(P ) de-
notes the spread of P . We then show in Section 4 how the
interleaving between our filtration and the offsets filtration
can be tightened, so that we can produce persistence dia-
grams that are accurate within any arbitrarily small error.
Finally, in Section 5 we concentrate on the size of the fil-
tration and show how to eliminate its dependence on the
spread by a recursive decomposition of the input.

2. PRELIMINARIES
Throughout the paper, the ambient space is R

d, endowed
with the standard Euclidean norm, noted | · |. We use sin-
gular homology with coefficients in a field, omitted in our
notations for simplicity. We refer the reader to [18] for a
thorough introduction to homology theory.

2.1 Clipped Voronoi Diagrams and
Sparse Voronoi Refinement

Let P be a finite set of distinct points lying in general posi-
tion in R

d. We denote by Vor(P ) the Voronoi diagram of P ,
defined as a collection of closed cells {Vor(p) : p ∈ P}, where
each cell Vor(p) is the locus of the points of R

d that are at
least as close to p as to any other point of P . Its dual com-
plex is known as the Delaunay triangulation Del(P ). Since
P lies in general position, Del(P ) is an embedded simplicial
complex in R

d, whose underlying space coincides with the
convex hull of P .

Given an axis-aligned box BB containing P , we consider
the restrictions of the Voronoi diagram and Delaunay tri-
angulation to BB. Specifically, given a point p ∈ P , we
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Figure 1: The Clifford data set. Left: point cloud sampled uniformly along a periodic curve in [0, 2π]2,
then mapped onto a helicoidal curve drawn on the Clifford torus in R

4 via the canonical embedding (u, v) 7→
(cos u, sin u, cos v, sin v). Right: log-scale barcode obtained on this data set using the filtration of Section 3.2.

call Vor�(p) its Voronoi cell clipped to BB: Vor�(p) =
Vor(p)∩BB. We call Vor�(P ) the Voronoi diagram clipped
to BB, and Del�(P ) its dual complex, which is a subcom-
plex of Del(P ). For a clipped Voronoi cell Vor�(p), we let
Rp be the radius of the smallest Euclidean ball centered at
p that contains all of Vor�(p), and we let rp be the radius of
the largest Euclidean ball centered at p that is entirely con-
tained in Vor�(v). We define the aspect ratio of the clipped
Voronoi cell to be Rp/rp.

Sparse Voronoi Refinement (Svr). The Svr algorithm
takes a finite point cloud P as input and returns a finite
superset M of P that satisfies the following properties:

(i) M is a point sampling of some axis-aligned bounding
box BB of side length O(diam(P )) around P ,

(ii) Del�(M) = Del(M), where Del�(M) denotes the De-
launay triangulation clipped to BB,

(iii) the clipped Voronoi cells have aspect ratios bounded
from above by an absolute constant ρ ≥ 2,

(iv) The size of Del(M) is 2O(d2)|M |,
(v) The size of M is 2O(d)n log(∆(P )), where ∆(P ) de-

notes the spread of P , i.e. the ratio of the largest to
smallest interpoint distances among the points of P .

As shown in [20], the extra work needed to fill in the entire
bounding box BB with point samples is negligible. The
points of S = M \ P added by the algorithm are called
Steiner points. We will refer to the point set M along with
its Delaunay triangulation as the mesh. The Svr algorithm
can produce M in near-optimal 2O(d)n log(∆(P )) + O(|M |)
time [19]. As shown in [21], it is possible to reduce the

output-sensitive term |M | to 2O(d log d)n by applying Svr to
well-chosen subsets of the input called well-paced sets. This
technique will be used in Section 5 to improve the complexity
of our method, which uses Svr as a black box.

2.2 Filtrations, persistence diagrams and sta-
bility

A filtration is a one-parameter family F = {Fα}α≥0 of
topological spaces that is nested with respect to inclusion,

that is: Fα ⊆ Fβ for all β ≥ α ≥ 0. Persistence theory
describes the evolution of the homology of the sets Fα as α
ranges from 0 to +∞. This is done through a special type
of planar representation called a persistence diagram. When
the parameter of F is clear and varies over all of [0, +∞], we
write simply {Fα} rather than {Fα}α≥0. Given a discrete
subset A = {· · · , αi, αj , αk, · · · } of [0, +∞) that has no
accumulation point, the canonical inclusions · · · →֒ Fαi

→֒
Fαj

→֒ Fαk
→֒ · · · induce a directed system of vector spaces

involving the r-dimensional homology groups:

· · · −→ Hr(Fαi
) −→ Hr(Fαj

) −→ Hr(Fαk
) −→ · · ·

If all the vector spaces are finite-dimensional, then the fil-
tration, F , is said to be tame, and the algebraic structure
of this system can be encoded as a multi-set of points in
[0, +∞]2. The r-th persistence diagram of F is then ob-
tained by considering a growing family {Ai}i∈N of discrete
sets, whose union is dense in [0, +∞), and by taking the
well-defined limit of their corresponding multi-sets, which
does not depend on the choice of the family {Ai}i∈N. The
union of all such diagrams for r ranging over N is called the
persistence diagram of F , noted DF . Intuitively, each point
p ∈ Df encodes the lifespan of some homological feature
(connected component, hole, void, etc.) appearing at time
px and dying at time py in the filtration. For formal devel-
opments on this topic, please refer to [4], whose framework
is adopted here.

An important property of persistence diagrams is to be
stable under small perturbations of the filtrations. Proxim-
ity between filtrations is defined in terms of mutual nest-
ing: specifically, two tame filtrations F ,G are said to be ε-
interleaved if we have Fα ⊆ Gα+ε and Gα ⊆ Fα+ε for all α ≥
0. Under this condition, it is known that the persistence dia-
grams DF and DG are ε-close in the bottleneck distance [4,
8]. Recall that the bottleneck distance d∞

B (A, B) between
two multi-sets A,B ⊂ [0, +∞]2 is defined as the quantity
minγ maxp∈A ‖p−γ(p)‖∞, where ‖·‖∞ denotes the l∞-norm
and γ ranges over all bijections from A to B. To make sure
that such bijections always exist, all persistence diagrams



are enriched with the diagonal {(x, x) : x ∈ [0, +∞]}, whose
multiplicity is set to infinity. The formal statement goes as
follows:

Theorem 2.1. (Stability [4, 8]). If two tame filtrations

F , G are ε-interleaved, then d∞
B (DF , DG) ≤ ε.

Multiplicative interleaving. In this paper we consider fil-
trations F ,G that are ε-interleaved multiplicatively, that is:
Fα ⊆ Gαε and Gα ⊆ Fαε for all α ≥ 0. Consider logF
and log G, the reparametrizations of the filtrations F and
G on the natural logarithmic scale1: ∀α ∈ R, log Fα =
Fexp(α) and log Gα = Gexp(α). Multiplicative ε-interleaving
of F and G implies additive log(ε)-interleaving of their repa-
rametrizations, logF and log G, that is: ∀α ∈ R, log Fα ⊆
log Gα+log ε and log Gα ⊆ log Fα+log ε.

As a result, multiplicative interleaving of filtrations im-
plies the following weaker form of proximity between their
persistence diagrams, where the notation dlog

D (F , G) stands
for the quantity d∞

B (D logF , D log G):

Corollary 2.2. If two filtrations F , G are ε-interleaved

multiplicatively, then dlog
D (F ,G) ≤ log ε.

The persistence diagram of a simplicial filtration (i.e. a finite
family of nested finite abstract simplicial complexes) can be
computed using the persistence algorithm [13, 26]. Its run-
time is determined by the total number of simplices m in
the filtration; in the worst case, it can take O(m3) time,
although in practice near-linear times are common. Con-
structing the filtration itself will take us near-linear time as
well: reducing the size of the filtration represents a large win
for computing persistent homology.

2.3 Filters and projections
In addition to filtering simplicial complexes, a filtration

can also be defined by considering a topological space X
and a non-negative function t : X → [0, +∞), called a filter,
which encodes the time at which each point of X appears
in the filtration. The spaces forming the filtration are the
sublevel-sets of t, i.e. the sets of the form Fα = t−1([0, α]).
In this setting, a filtered simplicial complex is a piecewise
constant function that maps the interior of a simplex σ to
t(σ).

Distance functions are an important class of filters con-
sidered in the paper. Given a compact set P in Euclidean
space R

d, let dP (x) denote the distance from x ∈ R
d to the

nearest point in P :

dP (x) = min
p∈P

|x − p|.

For any α ≥ 0, the sublevel-set P α = d−1
P ([0, α]) is the

union of the closed Euclidean balls of same radius α about
the points of P , called the α-offset of P . The family of
sublevel-sets of dP is thus known as the offsets filtration of
P in the literature. This filtration has played an important
role in topological inference from point cloud data, where it
has been used as a central theoretical tool for proving the
correctness of existing methods [5, 6, 8, 22].

We will also be using a related distance function induced
by P ⊂ R

d. The Ruppert local feature size, fP (x), is the
distance from x to its second nearest neighbor in P [23]:

fP (x) = min
p1 6=p2∈P

max{|x − p1|, |x − p2|}.
1Throughout the paper, log denotes the natural logarithm.

The triangle inequality implies that fP is 1-Lipschitz. The
function fP is a standard tool in mesh generation as it
bounds the size of Voronoi cells locally in an optimal, bounded
aspect ratio mesh.

To conclude this preliminary section, let us mention an-
other important function derived from a compact set P :
the metric projection πP : R

d → R
d, defined by πP (x) =

argminy∈P |x−y| for all x ∈ R
d. This function will be instru-

mental in showing topological equivalence between various
families of spaces. In particular, we will rely on the following
classical result of convex geometry, whose proof is recalled
for completeness in the full version of the paper:

Lemma 2.3. If P ⊂ R
d is compact and convex, then the

projection πP is well-defined and 1-Lipschitz over R
d.

3. THE α-MESH FILTRATION
Our strategy is to build a superset M of the input point

set P , and then to filter the Delaunay triangulation of M in
order to obtain a filtration that can be related to the offsets
filtration of P . In Section 3.1 we present a simplified ver-
sion of our filter that yields a partial approximation (Theo-
rem 3.5). This version may not always be useful in practice,
however it is more intuitive and will enable us to empha-
size the key ingredients of our approach. In Section 3.2 we
will reuse these ingredients and expand upon them to im-
prove our filter and obtain a full approximation guarantee
(Theorem 3.7).

3.1 Basic filter
Our input is a finite set P of points in general position

in R
d. We first apply the Svr algorithm to construct a

superset M ⊇ P that satisfies conditions (i) through (v)
of Section 2.1. We then define the filter t : Del(M) → R

as follows, identifying each k-simplex σ ∈ Del(M) with its
vertex set {v0, . . . , vk} ⊆ M :

t(σ) = max
v∈σ

dP (v).

We define the α-mesh filtration {Dα
M} as the sublevel-sets

filtration of t: for every α ≥ 0, let Dα
M be the subcomplex

of Del(M) made of all simplices σ with t(σ) ≤ α. Note that
if τ is a face of σ then t(τ ) ≤ t(σ), so the spaces forming
the filtration are proper simplicial complexes. Furthermore,
Dα

M ⊆ Dβ
M for all β ≥ α ≥ 0.

Figure 2: From left to right: the offset P α, the α-

Voronoi V α
M and its dual α-mesh Dα

M .

Intuitively, our basic filter sorts the simplices of Del(M)
according to their distances to P , in order to simulate within
Del(M) the growth of the offsets of P — see Figure 2 for an
illustration. Our analysis shows that this simulation process
works thanks to the fact that Voronoi cells have bounded
aspect ratios.



Theoretical analysis. Our goal is to relate {Dα
M} to the

offsets filtration {P α}. We do the analysis in terms of a
dual filtration, {V α

M}, based on the clipped Voronoi diagram
Vor�(M) — see Figure 2 (center) for an example. To each
point v ∈ M we assign a closed convex set Uα(v) as follows:

Uα(v) =



∅ if α < t(v),
Vor�(v) otherwise.

The filtration {V α
M} is defined by V α

M =
S

v∈M Uα(v) for all
α ≥ 0, and the collection Uα = {Uα(v)}v∈M forms a closed
cover of V α

M . Let NUα denote its nerve, i.e. the simplicial
complex containing one k-simplex for each non-empty inter-
section of k + 1 elements in Uα. Both Dα

M and NUα are
embedded as subcomplexes of the full simplex 2M over the
vertex set M , and the following lemma stresses their rela-
tionship:

Lemma 3.1. For all α ≥ 0, the subcomplexes Dα
M and

NUα of the full simplex 2M are equal.

Proof. Consider first the case of a zero-dimensional sim-
plex σ = {v}. The definition of Dα

M states that {v} ∈ Dα
M if

and only if dP (v) ≤ α, which is also the criterion for which
Uα(v) is not empty and hence belongs to the collection Uα.
Thus, {v} ∈ Dα

M ⇔ {v} ∈ NUα.
Consider now the case of a higher-dimensional simplex

σ = {v0, · · · , vk}. The definition of Dα
M states that σ ∈ Dα

M

if and only if σ ∈ Del(M) and maxi t(vi) ≤ α, which is

equivalent to
Tk

i=0 Vor(vi) 6= ∅ and maxi t(vi) ≤ α. By

assertion (ii) of Section 2.1, we have
Tk

i=0 Vor(vi) 6= ∅ ⇔
Tk

i=0 Vor(vi) ∩ BB 6= ∅ ⇔ Tk
i=0 Vor�(vi) 6= ∅. Hence, σ ∈

Dα
M if and only if σ ∈ NUα.

Since the sets Uα(v) in the cover of V α
M are convex, the

Nerve Theorem [18, §4G] implies that V α
M and its nerve NUα

are homotopy equivalent. Furthermore, since the sets Uα(v)
are monotonically increasing with α, it follows from the Per-
sistent Nerve Theorem [6] that the filtration {V α

M} and the
family of nerves {NUα} have identical persistence diagrams
(see the full version of the paper for the details of the argu-
ment). Combined with Lemma 3.1, this fact draws a connec-
tion between the persistence diagrams of {V α

M} and {Dα
M}:

Lemma 3.2. The persistence diagrams of the filtrations

{V α
M} and {Dα

M} are identical.

Let the clipped offsets be defined as follows, in analogy with
the clipped Voronoi cells: P α

� = P α ∩ BB = {x ∈ BB |
dP (x) ≤ α}. Let also rP = 1

2
maxp∈P dM\{p}(p). Using

the fact that the clipped Voronoi cells have bounded aspect
ratios, we can show that the clipped offsets filtration is mul-
tiplicatively interleaved with {V α

M}, starting at time α = rP :

Lemma 3.3. For all α ≥ rP , we have V
α/ρ

M ⊆ P α
� ⊆ V ρα

M .

Proof. Let x ∈ V
α/ρ

M ⊆ BB, and let v ∈ M be such
that x ∈ Uα/ρ(v). Let also p ∈ P be closest to v. If v ∈
P , then assertion (iii) of Section 2.1 implies that dP (x) ≤
|x − v| ≤ ρ

2
dM\{v}(v) ≤ rP ≤ α. If v ∈ M \ P , then

the fact that Uα/ρ(v) 6= ∅ implies that |v − p| ≤ α/ρ and
Uα/ρ(v) = Vor�(v). This implies that |x − p| ≤ |x − v| +
|v − p| ≤ |x − v| + α/ρ. Now, assertion (iii) of Section 2.1
guarantees that the aspect ratio of Vor�(v) is at most ρ,
implying that |x − v| ≤ ρ

2
dM\{v}(v) ≤ ρ

2
|v − p| ≤ α

2
. Thus,

dP (x) ≤ |x − p| ≤ α( 1
2

+ 1
ρ
). Since ρ ≥ 2, we conclude that

dP (x) ≤ α. Hence, in all cases we have dP (x) ≤ α, which
means that x ∈ P α

� .
Let now x ∈ P α

� , and let v ∈ M and p ∈ P be closest to x.
Then, x belongs both to Vor�(v) and to the Euclidean ball
of center p and radius α. It follows that dP (v) ≤ |v − p| ≤
|v − x| + |x − p| ≤ 2|x − p| ≤ 2α ≤ ρα. This means that
Uρα(v) = Vor�(v), which contains x. As a consequence, we
have x ∈ V ρα

M .

Finally, we relate the clipped offsets filtration to the real
offsets filtration:

Lemma 3.4. For all α ≥ 0, the canonical inclusion P α
� →֒

P α is a homotopy equivalence.

Proof. Let πBB denote the metric projection onto BB,
that is: πBB(x) = argminy∈BB|x−y|. Since BB is compact
and convex, Lemma 2.3 ensures that πBB is well-defined and
1-Lipschitz over the entire space R

d. Let x be a point of P α,
and let x′ = πBB(x). We will show that the line segment
[x, x′] is included in P α. Let p ∈ P be such that |x−p| ≤ α.
Since BB contains P , we have πBB(p) = p, and therefore
|p − x′| ≤ |p − x| since πBB is 1-Lipschitz. It follows that
both x and x′ belong to the ball of center p and radius α.
Since this ball is convex, it contains in fact the whole line
segment [x, x′].

Let now F : [0, 1] × P α → R
d be defined by F (t, x) =

(1−t)x+tπBB(x). Since πBB is 1-Lipschitz, F is continuous.
In addition, the above discussion shows that F (t, P α) ⊆ P α

for all t ∈ [0, 1]. Also, since P α
� ⊆ BB, the restriction of

πBB to P α
� is the identity, therefore so is the restriction of

F . Finally, for all x ∈ P α we have F (1, x) = πBB(x) ∈ P α∩
BB = P α

� . Hence, F is a deformation retraction of P α onto
P α

� , which implies that the canonical inclusion P α
� →֒ P α is

a homotopy equivalence.

With the above results we can compare the diagrams of the
truncated2 filtrations {P α}α≥rP

and {Dα
M}α≥rP

:

Theorem 3.5. On the natural logarithmic scale, the per-

sistence diagrams of the truncated filtrations {P α}α≥rP
and

{Dα
M}α≥rP

are log ρ-close in the bottleneck-distance, i.e.

dlog
D ({P α}α≥rP

, {Dα
M}α≥rP

) ≤ log ρ.

Proof. By Lemma 3.4, the canonical inclusions P α
� →֒

P α and P β
�

→֒ P β are homotopy equivalences that com-

mute with the inclusions P α
� →֒ P β

�
and P α →֒ P β for all

β ≥ α ≥ 0, so the filtrations {P α} and {P α
�} have identi-

cal persistence diagrams. In addition, Lemma 3.2 implies
that {Dα

M}α≥0 and {V α
M} have identical diagrams. The

result follows then from the interleaving of the truncated
filtrations {P α

�}α≥rP
and {V α

M}α≥rP
(Lemma 3.3) and its

consequences on the proximity of their diagrams (Corol-
lary 2.2).

Intuitively, Theorem 3.5 means that homological features
appearing in the offsets filtration after time α = rP are
captured by the α-mesh filtration, with approximately the
same birth and death times on the natural logarithmic scale;
features appearing before rP and dying after rP are also
captured, but starting at times potentially as late as rP ,

2Although these filtrations are only indexed over a subin-
terval of [0, +∞), their persistence diagrams can be defined
using the same process as in Section 2.2, and the proofs of
Theorem 2.1 and Corollary 2.2 carry over.



the death times remaining approximately the same; finally,
features appearing and dying before rP may not be captured
at all by the α-mesh filtration.

3.2 Full filter
The basic filter only enables us to approximate the per-

sistence diagram of the offsets filtration after a certain time
α = rP (Theorem 3.5). The reason for this appears clearly
in the proof of Lemma 3.3: even though we have P α

� ⊆ V ρα
M

for all α ≥ 0, the symmetric inclusion V α
M ⊆ P ρα

�
only holds

when α ≥ rP , since the clipped Voronoi cells of the input
points appear in V α

M at time α = 0 and are not covered by
P α before α = ρrP . In the dual α-mesh, this phenomenon
translates into the appearance of edges between the points
of P at time α = 0, whereas such edges should normally
appear when α-balls around these points touch one another.

In this section we propose a solution to this issue, which
consists in modifying the filter of Del(M) so as to somewhat
delay the appearances of the simplices incident to the points
of P in the α-mesh filtration. The rest of the approach
remains unchanged: we apply Svr on the input point cloud
P , to get a vertex set M ⊇ P , then we define a modified filter
t̃ : Del(M) → R and build its sublevel-sets filtration {D̃α

M}.

Filter modification. We follow the above recommendations
and modify our filter to be a little more careful in the region
close to the input points. Let s(v) = 1

2
fM (v) if v ∈ P and

s(v) = dP (v) otherwise, where fM denotes the Ruppert local
feature size of M . Then, we modify our filter as follows:

t̃(σ) =

(

dP (v) if σ is a vertex v ∈ M ,
max
v∈σ

s(v) otherwise.

In other words, we delay the time at which Delaunay sim-
plices incident to the points of P appear, although the points
themselves still appear as vertices at time α = 0. The
amount of the delay is based on the Ruppert local feature
size of the augmented point set M .

Theoretical analysis. We resort again to a dual filtration

{Ṽ α
M} with Ṽ α

M =
S

v∈M Ũα(v), where the sets Ũα(v) are
slightly modified versions of the sets Uα(v) from Section 3.1:

Ũα(v) =

8

<

:

∅ if α < t̃(v),
ball(v, α) if v ∈ P and t̃(v) ≤ α < s(v),
Vor�(v) otherwise.

Making Ũα(v) equal to ball(v, α) instead of the empty set
when v ∈ P and α < s(v) enables us to obtain an interleav-

ing between the entire filtrations {Ṽ α
M} and {P α

�}:
Lemma 3.6 (analog of Lemma 3.3). For all α ≥ 0,

we have Ṽ
α/ρ

M ⊆ P α
� ⊆ Ṽ ρα

M .

Proof. Let x be a point of Ṽ
α/ρ

M ⊆ BB, and let v ∈ M

be such that x ∈ Ũα/ρ(v). If v ∈ P with dM\{v}(v) > 2α/ρ,

then x ∈ ball(v, α/ρ) and thus x ∈ P
α/ρ
�

⊆ P α
� . If v ∈ P

with dM\{v}(v) ≤ 2α/ρ, then condition (iii) of Section 2.1
guarantees that |x− v| ≤ α and thus x ∈ P α

� . If v ∈ S, then
the analysis is exactly the same as in the proof of Lemma 3.3.

So, we have Ṽ
α/ρ

M ⊆ P α
� .

For the second inclusion, let x be a point of P α
� . We want

to show that x ∈ Ṽ ρα
M . Let v ∈ M be closest to x. If v ∈ P ,

then x ∈ ball(v, α) ∩ Vor�(v), which is included in Ũα(v)

by definition (recall that we have t̃(v) = 0). As a result,

x ∈ Ṽ ρα
M . If v ∈ S, then the analysis is the same as in the

proof of Lemma 3.3. So, we have P α
� ⊆ Ṽ ρα

M .

The rest of the analysis is roughly the same as in Sec-
tion 3.1, and we refer the reader to the full version of the
paper for the details:

Theorem 3.7 (analogue of Theorem 3.5). On the

natural logarithmic scale, the persistence diagrams of {P α}
and {D̃α

M} are log ρ-close in the bottleneck-distance, that is,

dlog
D

“

{P α}, {D̃α
M}
”

≤ log ρ.

4. TIGHTER INTERLEAVING VIA

OVERMESHING
It follows from Theorem 3.7 that the approximation error

induced by our approach diminishes as parameter ρ shrinks.
However, recall from assertion (iii) of Section 2.1 that the
mesher requires ρ ≥ 2 in order to terminate. In this section
we show how we can reduce the approximation error to any
arbitrarily small ε > 0 by inserting a controlled number of
extra Steiner points and by using a more elaborate filter,
which rids our analysis of its dependence on parameter ρ.
Let f : R

d → R be a sizing function. As long as f is bounded
from above by the Ruppert local feature size fP , Svr can
return a mesh M such that the radius Rv of every Voronoi
cell Vor(v) is at most f(v). Given a parameter ε > 0, let
f(x) = 1

3(1+1/ε)
fP (x). This means that for any v ∈ M and

any x ∈ Vor�(v), fP (v) ≥ 3(1 + 1
ε
)|x − v|. The standard

mesh size analysis implies that the size m of our output mesh
M will be bounded as follows:

m = O

„Z

BB

1

f(z)d
dz

«

= O

 

„

3(1 +
1

ε
)

«d Z

BB

1

fP (z)d
dz

!

.

In other words, our new sizing function f will only increase

the mesh size by a factor of
`

3(1 + 1
ε
)
´d

.

Modified α-mesh filtration. As before, we run Svr on the
input point set P , but this time using the sizing function f
described above. Letting M denote the output superset of
P , we modify the filter on Del(M) in such a way that the
Voronoi cells of mesh vertices that are significantly closer to
a given point p ∈ P than to the others appear only once p
lies within α/2 of its nearest neighbor in P \ {p}.

More precisely, for every point x ∈ R
d let nx denote the

point of P closest to x — if there are two or more such
points, then choose either of them as nx. We define the
following function on the mesh vertices:

∀v ∈ M, s′(v) = max



dP (v),
1

2
fP (nv)

ff

. (1)

Note that when v belongs to P , we have nv = v and s′(v) =
1
2
fP (v). Also, if v is equidistant to two vertices p, q ∈ P ,

then dP (v) ≥ 1
2
fP (p) and dP (v) ≥ 1

2
fP (q), so the choice of

which serves as nv is irrelevant. Our new filter t′ : Del(M) →
R is defined as follows:

• for every vertex v ∈ M , let t′(v) = 0 if v ∈ P and
t′(v) = s′(v) if v ∈ M \ P ,

• for every higher-dimensional simplex σ = {v0, · · · , vk} ∈
Del(M), let t′(σ) = maxi∈{0,··· ,k} s′(vi).



The modified α-mesh filtration {D′α
M }α≥ is defined as the

sublevel-sets filtration of t′, so once again each space D′α
M is

a subcomplex of Del(M).

Approximation guarantee. Here again the analysis is done
in terms of a dual filtration {V ′α

M}, defined by V ′α
M =

S

v∈M U ′
α(v), where

U ′
α(v) =

8

<

:

∅ if v ∈ M \ P and α < s′(v),
ball(v, α

1+ε
) if v ∈ P and α < s′(v),

Vor�(v) otherwise.

Let U ′
α denote the collection of sets {U ′

α(v)}v∈M . In con-
trast with Section 3, the sets U ′

α(v) ∈ U ′
α are not monoton-

ically increasing with α, the problem being that U ′
α(v) 6⊆

U ′
β(v) when v ∈ P and α < s′(v) ≤ β. Nevertheless, for our

choice of sizing field f the family {V ′α
M} is still a valid fil-

tration and D′α
M is the nerve of its cover. These two facts are

proved respectively in Lemmas A.3 and A.4 of Appendix A.
As in the previous section, the filtration {V ′α

M} is inter-
leaved multiplicatively with {P α

�}, however this time with
an arbitrarily small interleaving factor:

Lemma 4.1. Given ε ≤ 1
2
, for all α ≥ 0, V ′α/(1+ε)

M ⊆
P α

� ⊆ V ′α(1+ε)
M .

Proof. First we prove V ′α/(1+ε)
M ⊆ P α

� . Let x be a point

in V ′α/(1+ε)
M , and let v ∈ M be such that x ∈ U ′

α/(1+ε)(v).
There are two cases to consider, depending on the value of
α and on the location of v. In each case, the goal is to show
that dP (x) ≤ α.
Case α/(1 + ε) < s′(v):
In this case we have v ∈ P and U ′

α/(1+ε)(v) = ball(v, α/(1 +

ε)2), which gives dP (x) ≤ |x − v| ≤ α
(1+ε)2

≤ α.

Case α/(1 + ε) ≥ s′(v):
Since fP is 1-Lipschitz, we have fP (v) ≤ fP (nv) + dP (v),
which by (1) is at most 3s′(v). Hence,

dP (x) ≤ dP (v) + |x − v| ≤ s′(v) + f(v)

≤ s′(v) +
ε

3(1 + ε)
fP (v) ≤ s′(v)(1 + ε) ≤ α.

Now we prove the other inclusion, namely P α
� ⊆ V ′α(1+ε)

M .
Let x be a point in P α

� , and let v ∈ M be closest to x. Then,
x ∈ Vor�(v), and we will show that either x ∈ U ′

α(1+ε)(v)

or x ∈ U ′
α(1+ε)(nv). If α(1 + ε) ≥ s′(v) then U ′

α(1+ε)(v) =
Vor�(v), which contains x, so we may assume α(1 + ε) <
s′(v). Once again we distinguish between several cases:
Case v ∈ P :

In this case we have U ′
α(1+ε)(v) = ball(v, α), which contains

x by hypothesis.
Case v ∈ M \ P and s′(v) = 1

2
fP (nv):

Our assumption that α < s′(v)
1+ε

implies |x − nx| ≤ α <
fP (nv)
2(1+ε)

. It turns out that points x and v have a common

nearest neighbor in P . Indeed, otherwise we can derive the
following contradiction:

fP (nv) ≤ |nv − nx| ≤ |nv − v| + |v − x| + |x − nx|
≤ dP (v) +

ε

3(1 + ε)
fP (v) + α

<

„

1

2
+

ε

2(1 + ε)
+

1

2(1 + ε)

«

fP (nv) = fP (nv).

So, nx = nv. Since in addition α(1+ε) < s′(v) = 1
2
fP (nv) ≤

s′(nv), we deduce that U ′
α(1+ε)(nv) = ball(nv, α) = ball(nx, α),

which contains x.
Case v ∈ M \ P and s′(v) = dP (v):
In fact, this case cannot occur. Indeed, our assumption that

α < s′(v)
1+ε

implies |x−nx| < s′(v)
1+ε

, which enables us to derive
the following contradiction:

s′(v) = dP (v) ≤ |v − x| + |x − nx|

<
ε

3(1 + ε)
fP (v) +

1

1 + ε
s′(v)

≤ ε

3(1 + ε)
fP (nv) +

ε

3(1 + ε)
dP (v) +

1

1 + ε
s′(v)

<
2ε

3(1 + ε)
s′(v) +

ε

3(1 + ε)
s′(v) +

1

1 + ε
s′(v) = s′(v).

The usual approach to relating the persistence diagrams
of {D′α

M } and {V ′α
M} cannot be used directly here because,

although D′α
M is the nerve of a good closed cover of V ′α

M , the
sets U ′

α(v) in that cover do not grow monotonically with α.
Consequently, we use an intermediate filtration, {NU ′′

α},
where each space NU ′′

α is defined as the nerve of the col-
lection of sets U ′′

α = {U ′′
α(v)}v∈M where U ′′

α(v) = U ′
α(v) ∩

Vor�(v). It turns out that NU ′′
α and D′α

M are isomorphic
cell complexes. The proof of this fact is a simple exercise,
recalled in Lemma A.5 of Appendix A for completeness.

Let now V ′′α
M =

S

v∈M U ′′
α(v). Obviously, we have V ′′α

M ⊆
V ′α

M since U ′′
α(v) ⊆ U ′

α(v) for all v ∈ M . It turns out
that the canonical inclusion V ′′α

M →֒ V ′α
M is a homotopy

equivalence, as proved in Lemma A.6 of Appendix A.
Equipped with these definitions and properties, we can

prove the main result of the section:

Theorem 4.2. Given a user-defined parameter ε ∈ (0, 1
2
]

controlling the sizing function for M , the persistence dia-

grams of {P α} and {D′α
M } on the natural logarithmic scale

are ε-close in the bottleneck-distance, i.e. dlog
D ({P α}, {D′α

M })
≤ ε.

Proof. The persistence diagrams of {D′α
M } and {NU ′′

α}
are identical because NU ′′

α and D′α
M are isomorphic cell com-

plexes. In addition, since the sets U ′′
α(v) are convex and

monotonically increasing with α, the same standard argu-
ments of algebraic topology as the ones used in Section 3.1
show that the persistence diagrams of {NU ′′

α} and {V ′′α
M}

are identical. Finally, the persistence diagrams of {V ′′α
M}

and {V ′α
M} are the same because the canonical inclusion

V ′′α
M →֒ V ′α

M is a homotopy equivalence for all α ≥ 0. Com-
bining these equivalences, we obtain that {D′α

M } and {V ′α
M}

have identical persistence diagrams. Now, it follows from
Lemma 4.1 and Corollary 2.2 that dlog

D ({V ′α
M}, {P α

�}α≥0) ≤
log(1 + ε) ≤ ε. And to complete the proof, recall from
Lemma 3.4 that {P α

�} and {P α} have identical persistence
diagrams.

5. RECURSIVELY WELL-PACED SUBSETS
Under some restrictions on P , we can guarantee that |M | =

2O(d)|P | [20]; however, in general, the mesh can have size

up to 2O(d)|P | log(∆(P )), and the bound is tight. We now
define a filtration over the point cloud that recursively par-
titions the points so that each mesh has linear size, and



the same interleavings as before still hold. Let BB be a
bounding box around the input point set P . Given an or-
dering (p1, . . . , pn) of P , let P (0) = P ∩ BB and P (i) =
{p1, . . . , pi} ∩ BB for all i = 1, · · · , n. For any θ ∈ (0, 1),
we say that P is θ-well-paced with respect to BB if there
is an ordering of P such that dP (i)(pi+1) ≥ θfP (i) (pi+1) for
all i = 0, · · · , n − 1, where fP (i) is the Ruppert feature size

with respect to P (i) as defined in Section 2.3. The output of
Svr has linear size when the input is a well-paced set [21].

A simple greedy algorithm can be used to find a maxi-
mal θ-well-paced subset P1 of the input P . The remaining
points of P \ P1 are assigned to clusters around the points
in P1 based on their nearest neighbor in P1. The greedy
algorithm is repeated recursively on the clusters, each given
a reasonably-sized bounding box, producing a collection of
θ-well-paced point sets P1, . . . , Pk. As in Section 4, we con-
struct a mesh Mi for each Pi as well as the corresponding
filtration D′α

Mi
. We can then define a new (abstract) filtra-

tion Dα
M∗

=
Sk

i=1 D′α
Mi

, and by applying the proof methods
of Section 4 to the individual meshes Mi, we obtain the fol-
lowing theorem, the detailed proof of which can be found in
the full version of the paper:

Theorem 5.1. The persistence diagrams of {Dα
M∗

} and

{P α} on the natural logarithmic scale are (3θ + ε)-close in

the bottleneck distance, i.e. dlog
D ({Dα

M∗
}, {P α}) ≤ 3θ + ε.

The advantage of this slightly more complicated construc-
tion is that it only runs Svr on well-paced points and thus,
the size of the filtration does not depend on the spread of
the input. There is a tradeoff however, since the size can
increase by a factor of 1/θO(d).

6. EXPERIMENTS
As a proof of concept, we experimented on 2,000 points

chosen on the 4-dimensional Clifford torus (see Figure 1).
We modified a pre-existing SVR implementation [1] to run
in 4D and compute the filtration of Section 3.2. We used
the Plex library [27] to compute the persistence diagram.
To the 2,000 input points, Svr added approximately 71,000
Steiner points to achieve an aspect ratio ρ = 3.08 (a value
chosen for technical reasons). The mesh contained 2 million
pentahedra, or 12 million simplices. It took approximately
1 hour to compute the mesh and filtration, and another 7
hours to compute the persistence diagram.

Figure 1 (right) displays the persistence diagram thus ob-
tained as a persistence barcode [2] on the natural logarithmic
scale, where homological features are sorted first by their di-
mension, then by their birth time, and drawn as intervals.
Intervals with arrow heads extend to infinity. The qualita-
tive interpretation of the barcode is straightforward: scan-
ning through the scales from smallest to largest, we see the
disconnected point cloud, the helicoidal curve, the Clifford
torus, the 3-sphere of radius

√
2, and finally the ambient

space R
4, represented simply as a space with trivial reduced

homology groups. Note that the topological noise appearing
in the 2-dimensional barcode between -0.2 and 0 is made of
many short intervals of length less than 0.05. The 3-sphere
structure is of particular interest because it had never been
observed before, being too far from the beginning of the
filtration for Rips or Čech filtrations to capture it.

Quantitatively, the curve appears at time log α = −1.73,
which corresponds roughly to half the distance between con-
secutive points along the curve. The second 1-cycle of the

torus appears around log α = −1.2, which is only slightly
sooner than the time (log α = −1.16) at which consecu-
tive periods of the curve start being connected in the off-
sets filtration. The 2-cycle of the torus appears soon after-
wards, since the square [0, 2π]2 gets filled in rapidly once
consecutive periods of the curve start to connect. The iso-
lines u = Ct and v = Ct are mapped to unit circles in R

4,
so both 1-cycles as well as the 2-cycle should disappear at
log α = log 1 = 0 in the barcode, which is close to being
the case. Now, the Euclidean distance to the Clifford torus
over the 3-sphere reaches its maximum at point (

√
2, 0, 0, 0),

where its value is
p

4 − 2
√

2 ≈ 1.08, so the 3-sphere should
appear around log α = log 1.08 ≈ 0.08 in the barcode, which
is indeed the case in our result. Finally, at the end of the
barcode the approximation quality worsens slightly: since
the 3-sphere has radius

√
2, the 3-cycle should disappear

at log
√

2 ≈ 0.35, but in reality it does so sooner, around
log α = 0.18. Nevertheless, the absolute error is still within
log 1.18, meaning that our result is as good as if a multi-
plicative 1.18-interleaving had been obtained, whereas the
aspect ratio bound ρ used by the Svr algorithm was 3.08.
These observations suggest that our approach can perform
better in practice than expected from the theory.

Comparison. The 4-skeleton of the Rips filtration of P
reaches an equivalent size (2 million pentahedra) as early
as log α = −0.75, which makes it difficult with this budget
to detect the torus, and impossible to detect the 3-sphere.
Increasing the limit to a mere log α = −0.5 already raises
the size of the 4-skeleton to more than 10 million pentahe-
dra. The Clifford torus is not a worst case for the α-complex
filtration. However, as mentioned previously, the α-complex
is susceptible to pathological behaviour on some other very
reasonable inputs.

Engineering issues. Our implementation is very prelim-
inary and would benefit from substantial engineering. In
particular, the Svr implementation we adapted creates a
bounding box to avoid dealing with boundary issues. The
box includes a number of vertices that grows proportionally
to 1/(ρ−1)d−1; with ρ = 3.08 in 4D, this is 2,800 points. No
research is needed to solve this issue. In addition, since we
did not have access to efficient staged predicates and con-
structions in 4D, we used exact rational arithmetic, which
in 3D slows Svr down by a factor of worse than 20. Despite
this, meshing was not the bottleneck.

7. DISCUSSION

Steiner point choice. Since all our filtrations are derived
from the mesh Del(M), their sizes (and therefore the com-
plexity of the whole approach) depend heavily on the size of
M . Some work has been done in two and three dimensions
to optimize point placement (e.g. [24]), reducing the mesh
size for any requested quality. Furthermore, there is a huge
industry in mesh smoothing, which in practice improves the
quality of a mesh as a post-processing step. Reductions
in the number of Steiner points are particularly important
as the dimension increases; meanwhile, improving the mesh
quality reduces the approximation error.



Higher dimensions. A major limitation of our approach
lies in the fact that it is tied to the ambient space R

d,
which is fine only in small to moderate dimensions. One
possibility for improvement would be to refine the approach
and its analysis, so as to make its complexity depend on
the dimensionality of the topological features the user is
interested in. For instance, in scenarios where the data
are high-dimensional but the user is only interested in low-
dimensional structures, it would be interesting to devise a
mechanism that captures low-dimensional topological fea-
tures at all scales, at a cost that does not depend exponen-
tially on the ambient dimension. Some work has been done
in this direction [6], but many problems remain open. It
would be interesting to see if meshing techniques could help
in this context.

Approximating other filtrations. Our family of filtrations
enables us to approximate the persistence diagrams of other
filtrations besides the offsets filtration. An interesting exam-
ple is the Ruppert filtration, i.e. the sublevel-sets filtration
of the Ruppert local feature size fP . Using the same ma-
chinery as in Section 3, we can devise a filtration of the mesh
Del(M) that is interleaved with the Ruppert filtration of P ,
thus making it possible to approximate the persistence di-
agram of fP through meshing. The details are provided in
the full version of the paper. We believe the Ruppert local
feature size has a role to play in topological inference, due
to its close connections to distance functions (fP is the dis-
tance to the second nearest neighbor in P ) and to meshing
algorithms.

Superlevel-sets filtrations. Given a point cloud P ⊂ R
d,

our approach can also yield filtrations that are interleaved
with the family of superlevel-sets of dP . However, in R

d

the persistence diagram of the superlevel-sets filtration of
dP provides in fact the same information as the diagram
of the sublevel-sets filtration [9]3. It would be interesting
to see if our approach can be extended to other ambient
spaces where approximating the superlevel-sets of distance
functions would make sense.
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A. APPENDIX: MISSING PROOFS FROM

SECTION 4
The proofs of Lemmas A.3 through A.6 rely on the fol-

lowing technical results:

Lemma A.1. For all v ∈ P ,

ball

„

v,
s′(v)

1 + ε

«

⊆
[

u∈M:
|u−v|≤s′(v)

Vor�(u),

where ε ≤ 1
2

is a user defined parameter that controls the

sizing function for M .

Proof. Assume for a contradiction that ball(v, s′(v)
1+ε

) in-

tersects Vor�(u) for some u ∈ M such that |u−v| > s′(v) =
1
2
fP (v), and let x be a point in the intersection. Using the

triangle inequality, the sizing function f = ε
3(1+ε)

fP , and

the 1-Lipschitz property of fP , we obtain:

|u − v| ≤ |v − x|+ |x − u|

≤ s′(v)

1 + ε
+

ε

3(1 + ε)
fP (u)

≤ 1

2(1 + ε)
fP (v) +

ε

3(1 + ε)
fP (u)

≤ fP (v)

„

1

2(1 + ε)
+

ε

3(1 + ε)

«

+
ε

3(1 + ε)
|u − v|,

which implies that |u−v| ≤ fP (v)

„

1
2(1+ε)

+ ε
3(1+ε)

1− ε
3(1+ε)

«

= 1
2
fP (v),

which contradicts our hypothesis.

Lemma A.2. For all α ≥ 0 and all v ∈ P , if s′(v) > α
then U ′

α(v) ∩ U ′
α(u) = ∅ for all other u ∈ M .

Proof. Suppose for a contradiction that there exists some
u ∈ M such that U ′

α(v)∩U ′
α(u) 6= ∅. If U ′

α(u) = ball(u, α
1+ε

)
then u ∈ P and we get the following contradiction:

fP (v) ≤ |u − v| ≤ 2α

1 + ε
< 2α < 2s′(v) = fP (v).

If U ′
α(u) = Vor�(u) then s′(u) ≤ α < s′(v). By Lemma A.1,

if the Voronoi cell Vor�(u) intersects U ′
α(v) = ball(v, α

1+ε
)

then |u − v| ≤ s′(v). In this case, we get the following
contradiction:

s′(v) =
1

2
fP (v) ≤ 1

2
|v − nu| ≤ 1

2
(|v − u| + |u − nu|)

≤ 1

2
(s′(v) + dP (u)) ≤ 1

2
(s′(v) + s′(u)) < s′(v).

With these technical results at hand, we can prove Lem-
mas A.3 through A.6:

Lemma A.3. Given ε ≤ 1
2
, the family {V ′α

M}α≥0 is a

valid filtration.

Proof. Let v ∈ M and β ≥ α ≥ 0. By definition, we
have U ′

α(v) ⊆ U ′
β(v) unless v ∈ P and α < s′(v) ≤ β,

which is the case we will now address. In this case, we have
U ′

α(v) = ball(v, α
1+ε

) and U ′
β(v) = Vor�(v). Let S denote

the set M ∩ ball(v, s′(v)). For every u ∈ S we must have
v = nu, for otherwise the triangle inequality would imply
that fP (v) ≤ |v − nu| < 2s′(v) = fP (v), a contradiction.
As a result, s′(u) = s′(v) ≤ β, and thus U ′

β(u) = Vor�(u).
Then, Lemma A.1 implies that U ′

α(v) ⊆ S

u∈S Vor�(u) =
S

u∈S U ′
β(u) ⊆ V ′β

M .

Lemma A.4. Given ε < 3
2
, the complex D′α

M coincides

with the nerve of the cover U ′
α of V ′α

M .

Proof. For an input vertex p ∈ P , we have {p} ∈ D′α
M

and U ′
α(p) 6= ∅ for any α ≥ 0. For a Steiner vertex v ∈ M\P ,

we have {v} ∈ D′α
M ⇔ s′(v) ≤ α ⇔ U ′

α(v) 6= ∅. So, for all
α ≥ 0 the vertices of D′α

M and of the nerve of U ′
α coincide.

Before moving on to higher-dimensional simplices, let us
make the following claim. Let v ∈ P be such that s′(v) > α,
and thus U ′

α(v) = ball(v, α
1+ε

). By Lemma A.2, {v} is the

only simplex of the nerve of U ′
α that contains v. We claim

that {v} is also the only simplex of D′α
M that contains v.

Indeed, let u ∈ M be any neighbor of v in Del(M). First,
we have u ∈ M \ P . Indeed, |v − u| ≤ f(v) + f(u) ≤

ε
3(1+ε)

(fP (v)+fP (u)), which is at most 2ε
3(1+ε)

fP (v)+ ε
3(1+ε)

|u−
v| since fP is 1-Lipschitz. It follows that |u−v| ≤ 2ε

3+2ε
fP (v) <

fP (v), which means that u /∈ P . Second, we have nu = v.
Indeed, |v−nu| ≤ |v−u|+ |u−nu| ≤ 2|v−u| ≤ 4ε

3+2ε
fP (v),

which is less than fP (v) since ε < 3
2
. This means that nu =

v. It follows that s′(u) ≥ 1
2
fP (nu) = 1

2
fP (v) = s′(v) > α,

which proves our claim.
Our claim implies that any simplex σ = {v0, . . . , vk} with

k ≥ 1 that appears in D′α
M or in the nerve of U ′

α satisfies
U ′

α(vi) = Vor�(vi) for all i = 0 . . . k. Hence, σ ∈ D′α
M if and

only if σ belongs to the nerve of U ′
α.

Lemma A.5. For all α ≥ 0, NU ′′
α = D′α

M .

Proof. Observe that U ′′
α(v) ⊆ U ′

α(v) for all points v ∈
M , so NU ′′

α is naturally included in the nerve of U ′
α, which

by Lemma A.4 coincides with D′α
M . For the other inclusion,

we observe that U ′
α(v) ⊆ U ′′

α(v) unless v ∈ P and α < s′(v).
However, by Lemma A.2, such vertices v only appear in
0-simplices of D′α

M . These 0-simplices also appear in NU ′′
α

since Vor�(v)∩ball(v, α
1+ε

) 6= ∅, so indeed, D′α
M ⊆ NU ′′

α .

Lemma A.6. For all α ≥ 0, the canonical inclusion

V ′′α
M →֒ V ′α

M is a homotopy equivalence.

Proof. We will exhibit a deformation retraction of V ′α
M

onto V ′′α
M on each connected component of V ′α

M separately.
By Lemma A.2, every vertex v ∈ P with s′(v) > α has
the property that U ′

α(v) is disjoint from all other sets U ′
α(u)

and thus forms a separate connected component. On this
component the deformation retraction is easily defined us-
ing the metric projection onto the convex set U ′′

α(v), as in
Lemma 3.4. All other connected components of V ′α

M can
be expressed as unions of U ′

α(u)’s, each of which is equal to
Vor�(u). For these components the identity map is a trivial
deformation retraction.


