
CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

Transforming Hierarchical Trees on Metric Spaces∗

Mahmoodreza Jahanseir† Donald R. Sheehy‡

Abstract

We show how a simple hierarchical tree called a cover
tree can be turned into an asymptotically more efficient
one known as a net-tree in linear time. We also in-
troduce two linear-time operations to manipulate cover
trees called coarsening and refining. These operations
make a trade-off between tree height and the node de-
gree.

1 Introduction

There are many very similar data structures for search-
ing and navigating n points in a metric spaceM. Most
such structures support range queries and (approxi-
mate) nearest neighbor search among others. For com-
putational geometers, two of the most important such
structures for general metric spaces are the cover tree [2]
and the net-tree [8]. Cover trees, by virtue of their sim-
plicity, have found wide adoption, especially for machine
learning applications. Net-trees on the other hand, pro-
vide much stronger theoretical guarantees and can be
used to solve a much wider class of problems, but they
come at the cost of unrealistic constant factors and
complex algorithms. In this paper, we generalize these
two data structures and show how to convert a cover
tree into a net tree in linear time. In fact, we show
that a cover tree with the right parameters, satisfies
the stronger conditions of a net tree, thus finding some
middle ground between the two. In Section 5, we give
efficient algorithms for modifying these parameters for
an existing tree.

Related Work For Euclidean points, Quadtrees [5]
and k-d trees [1] are perhaps the two famous data struc-
tures. Most data structures for general metric spaces are
generalizations of these. Uhlmann [11] proposed ball
trees to solve the proximity search on metric spaces.
Ball trees are generalizations of k-d trees. Yianilos [12]
proposed a structure similar to ball trees called a vp-
tree that allows O(log n)-time queries in expectation for
restricted classes of inputs.

Clarkson [3] proposed two randomized data structures
to answer nearest neighbor queries in metric spaces

∗Partially supported by the National Science Foundation under
grant numbers CCF-1464379 and CCF-1525978
†University of Connecticut reza@engr.uconn.edu
‡University of Connecticut don.r.sheehy@gmail.com

that satisfy a certain sphere packing property. These
data structures assume that the input and query point
are drawn from the same probability distribution. The
nearest neighbor query time of these structures depends
on the spread ∆ of the input, which is the ratio of the di-
ameter to the distance between the closest pair of points.

Karger & Ruhl [9] devised a dynamic data struc-
ture for nearest neighbor queries in growth restricted
metrics. A closed metric ball centered at p with ra-
dius r is denoted B(p, r) := {q ∈ P | d(p, q) ≤ r}.
Karger & Ruhl defined the expansion constant as the
minimum µ such that for all p ∈ M and r > 0,
|B(p, 2r)| ≤ µ |B(p, r)|. A growth restricted metric
space has constant µ (independent of n). Karger & Ruhl
proved that their data structure has size µO(1)n log n,
and answers nearest neighbor queries in µO(1) log n.

Gupta et al. [7] defined the doubling constant ρ of a
metric space as the minimum ρ such that every ball in
M can be covered by ρ balls of half the radius. The dou-
bling dimension is defined as γ = lg ρ. A metric is called
doubling when it has a constant doubling dimension.

Krauthgamer & Lee [10] proposed navigating nets
to answer (approximate) nearest neighbor queries in
2O(γ) log ∆ + (1/ε)O(γ)-time for doubling metrics. Nav-
igating nets require 2O(γ)n space.

Gao et al. [6] proposed a (1 + ε)-spanner with size
O(n/εd) for a set of n points in Rd. Their data struc-
ture is similar to navigating nets and can be constructed
in O(n log ∆/εd) time and answers approximate nearest
neighbor queries in O(log ∆) time. They also main-
tained the spanner under dynamic updates and contin-
uous motion of the points.

Har-Peled & Mendel [8] devised a data structure
called a net-tree to address approximate nearest neigh-
bor search and some other problems in doubling metrics.
They proposed a linear-time algorithm to construct a
net-tree of size O(ρO(1)n) starting from a specific or-
dering of the points called an approximate greedy per-
mutation. Constructing a greedy permutation requires
O(ρO(1)n log(∆n)) time. To beat the spread, they pro-
posed a randomized algorithm to generate an approxi-
mate greedy permutation in O(ρO(1)n log n) time. Net-
trees support approximate nearest neighbor search in
O(2O(γ) log n) + (1/ε)O(γ) time.

Beygelzimer et al. [2] presented cover trees to solve
the nearest neighbor problem in growth restricted met-
rics. Cover trees are a simplificiation of navigating nets
and can be constructed incrementally in O(µ6n log n)

28th Canadian Conference on Computational Geometry, 2016

Figure 1: A hierarchical tree on P = {a, b, c, d, e, f}.
Squares and ovals illustrate points and nodes respec-
tively.

time. The space complexity of cover trees is O(n) inde-
pendent of doubling constant or expansion constant.

Cole & Gottlieb [4] extended the notion of navigat-
ing nets to construct a dynamic data structure to sup-
port approximate nearest neighbor search in O(log n) +
(1/ε)O(1) time for doubling metrics. Similar to net-
trees, their data structure provides strong packing and
covering properties. To insert a new point, they used
biased skip lists to make the search process faster. They
proved that the data structure requires O(n) space in-
dependent of doubling dimension of the metric space.

2 Definitions

Hierarchical trees. Cover trees and net-trees are both
examples of hierarchical trees. In these trees, the input
points are leaves and each point p can be associated with
many internal nodes. Each node is uniquely identified
by its associated point and an integer called its level.
Leaves are in level −∞ and the root is in +∞. The
node in level ` associated with a point p is denoted p`.
Let par(p`) be the parent of a node p` ∈ T . Also, let
ch(p`) be the children of p`. Each non-leaf has a child
with the same associated point. Similar to compressed
quadtrees, a node skips a level iff it is the only child
of its parent and it has only one child. Let L` be the
points associated with nodes in level at least `. Let Pp`
denote leaves of the subtree rooted at p`. The levels of
the tree represent the metric space at different scales.
The constant τ > 1, called the scale factor of the tree
determines the change in scale between levels. Fig 1
shows an example of hierarchical trees. Note that in
this figure the tree is neither a cover tree nor a net-tree,
because there are not any restrictions on the distance
between points.

Figure 2: Packing and covering balls for a point p at
level ` in a net-tree. White points belong to the subtree
rooted at node p`.

Cover Trees. A cover tree T is a hierarchical tree with
following properties.

• Packing: For all distinct p, q ∈ L`, d(p, q) > cpτ
`.

• Covering: For each rh ∈ ch(p`), d(p, r) ≤ ccτ `.

We call cp and cc the packing constant and the cov-
ering constant, respectively, and cc ≥ cp > 0. We repre-
sent all cover trees with the same scale factor, packing
constant, and covering constant with CT(τ, cp, cc). Note
that the cover tree definition by Beygelzimer et al. [2]
results a tree in CT(2, 1, 1).

Net-trees. A net-tree is a hierarchical tree. For each
node p` in a net-tree, the following invariants hold.

• Packing: B(p, cpτ
`)
⋂
P ⊂ Pp` .

• Covering: Pp` ⊂ B(p, ccτ
`). 1

Here, cp and cc are defined similar to cover trees.
Fig 2 illustrates both packing and covering balls for a
point p at some level ` in a net-tree. Let NT(τ, cp, cc)
denote the set of net-trees. The algorithm in [8] con-
structs a tree in NT(11, τ−5

2(τ−1) ,
2τ
τ−1).

The main difference in the definitions is in the pack-
ing conditions. The net-tree requires the packing to be
consistent with the hierarchical structure of the tree,
a property not necessarily satisfied by the cover trees.
Also, Har-Peled and Mendel [8] set τ = 11, whereas
optimized cover tree code sets τ = 1.3.

A net-tree can be augmented to maintain a list of
nearby nodes called relatives defined for each node p`

as follows.

Rel(p`) = {xf ∈ T with yg = par(xf) |f ≤ ` < g, and

d(p, x) ≤ crτ `}

1The packing condition we give is slightly different from [8],
but it is an easy exercise to prove this (more useful) version is
equivalent.

CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

We call cr the relative constant, and Har-Peled and
Mendel set cr = 13.

In this paper, we add a new and easy to implement
condition on cover trees. We require that children of a
node p` are closer to p than to any other point in L`.

3 From cover trees to net-trees

In this section, first we show that for every node in
a cover tree, the size of children and relatives of that
node is constant. Then, we prove that a cover tree with
a sufficiently large scale factor satisfies both stronger
packing and covering properties of net-trees.

Lemma 1 For each node p` in T ∈ CT(τ, cp, cc),
|ch(p`)| = O(ρlg ccτ/cp).

Proof. When |ch(p`)| > 1, all children of p` are in level
`− 1. From the packing property, the distance between
every two nodes in this list is greater than cpτ

`−1. We
know that all children of p` are within the distance ccτ

`

of p. By the definition of the doubling constant, the
ball centered at p with radius ccτ

` will be covered by
O(ρlg ccτ/cp) balls of radius cpτ

`−1. �

Lemma 2 Let p` ∈ T and T ∈ CT(τ, cp, cc). For each
two nodes se, tf ∈ Rel(p`), d(s, t) > cpτ

`.

Proof. Let rh = par(se). By the definition of relatives,
e ≤ ` < h. If e < `, then s = r and s ∈ Lh. Because
Lh ⊂ L`, the distance of s to all points in L` is greater
than cpτ

`. Otherwise, s is in level `. The same argument
holds for tf . Therefore, s, t ∈ L`, and it implies d(s, t) >
cpτ

`. �

Lemma 3 For each node p` in T ∈ CT(τ, cp, cc),
|Rel(p`)| = O(ρlg cr/cp)

Proof. By the definition of relatives, all nodes in
Rel(p`) are within the distance crτ

` of point p. From
Lemma 2, the distance between any two points in
Rel(p`) is greater than cpτ

`. Therefore, the total size
of Rel(p`) is O(ρlg cr/cp). �

Lemma 4 For each descendant xf of p` in T ∈
CT(τ, cp, cc), d(p, x) < ccτ

τ−1τ
`

Proof. The covering property and the triangle inequal-
ity imply that

d(p, x) ≤
∑̀
i=f

ccτ
i < cc

∞∑
i=0

τ `−i = cc
τ `+1

τ − 1
.

�

Theorem 5 For all τ > 2cc
cp

+ 1, if T ∈ CT(τ, cp, cc),

then T ∈ NT(τ,
cp(τ−1)−2cc

2(τ−1) , ccττ−1).

Algorithm 1 Augmenting a given cover tree with rel-
atives

1: procedure Augment(T, cr)
2: for all p` ∈ T in decreasing order of level ` do
3: Rel(p`)← p`

4: if p` is not the root then
5: Relatives(p`, cr, true)

Proof. From Lemma 4, for a node p` ∈ T , Pp` ⊂
B(p, ccττ−1τ

`). Suppose for contradiction there exists a

point r ∈ B(p,
cp(τ−1)−2cc

2(τ−1) τ `) such that r /∈ Pp` . Then,

there exists a node xf ∈ T which is the lowest node with
f ≥ ` and r ∈ Pxf . Let yg be the child of xf such that
r ∈ Pyg . It is clear that g < `. First, Let g < f − 1.
So, x = y and d(p, x) = d(p, y) > cpτ

`. By the triangle
inequality,

d(y, r) ≥ d(y, p)− d(p, r) > cpτ
` − cp(τ − 1)− 2cc

2(τ − 1)
τ `

>
cp(τ − 1) + 2cc

2(τ − 1)
τ `.

Also, d(y, r) ≤ ccτ
τ−1τ

g < ccτ
`

τ−1 . Therefore,

cp(τ − 1) + 2cc
2(τ − 1)

τ ` <
ccτ

`

τ − 1
.

This implies that cp(τ − 1) < 0, which is a contradic-
tion. Now, let g = f−1. In this case, we have f = ` and
g = ` − 1. By the parent property, d(y, p) > d(y, x).
So,

d(y, p) ≥ d(p, x)− d(x, y) > cpτ
` − d(y, p) > cpτ

`/2.

Also, by the triangle inequality,

d(y, r) ≥ d(y, p)− d(p, r) >
cp
2
τ ` − cp(τ − 1)− 2cc

2(τ − 1)
τ `

>
ccτ

`

τ − 1
.

We get a contradiction because d(y, r) ≤ ccτ
`

τ−1 . There-
fore, r ∈ Pp` . �

4 Augment cover trees

Theorem 5 shows that for a sufficiently large scale fac-
tor packing and covering properties in a cover tree imply
packing and covering properties of net-trees. However,
net-tree nodes maintain a list of nearby nodes called rel-
atives. Algorithm 1 is a procedure that adds a list of
relatives to each node of a cover tree. Note that Rela-
tives is similar to the find relative algorithm in [8], but
it gives a smaller relative constant.

28th Canadian Conference on Computational Geometry, 2016

Algorithm 2 Finding relatives of a node p`

1: procedure Relatives(p`, cr, update)
2: Let qm = parent(p`)
3: for all xf ∈ Rel(qm) do
4: Let yg = par(xf)
5: if d(p, x) ≤ crτ ` and f ≤ ` < g then
6: Add xf to Rel(p`)
7: else if update = true and ` ≤ f < m and

d(p, x) ≤ crτf then
8: Add p` to Rel(xf)

9: candidates←
⋃
re∈Rel(qm) ch(re) \ {p`}

10: for all xf ∈ candidates do
11: Let yg = par(xf)
12: if d(p, x) ≤ crτ ` and f ≤ ` < g then
13: Add xf to Rel(p`)
14: else if d(p, x) ≤ crτf and ` ≤ f < m then
15: if update = true then
16: Add p` to Rel(xf)

17: candidates← candidates ∪ ch(xf)

Theorem 6 For each node p` in T ∈ CT(τ, cp, cc) and

cr = ccτ
2

(τ−1)2 , Relatives correctly finds Rel(p`).

Proof. Suppose for contradiction there exists xf with
yg = par(xf) such that xf ∈ Rel(p`), and Relatives
does not find it. Therefore, either xf /∈ Rel(qm) or it has
an ancestor sh with h ≤ m − 1 such that p` /∈ Rel(sh).
We consider each case separately.

Case 1: xf /∈ Rel(qm). In this case, at least one of
the two conditions of relatives does not hold for xf . If
d(q, x) > ccτ

2

(τ−1)2 τ
m, then by the triangle inequality,

d(p, x) ≥ d(q, x)− d(p, q) >
ccτ

2

(τ − 1)2
τm − ccτm

> cc
2τ − 1

(τ − 1)2
τ `+1.

We assumed that xf ∈ Rel(p`), so d(p, x) ≤ ccτ
2

(τ−1)2 τ
`.

These inequalities imply τ < 1, a contradiction. If

d(q, x) ≤ ccτ
2

(τ−1)2 τ
m and g > f > m, then f > ` is

also a contradiction. The last case d(q, x) ≤ ccτ
2

(τ−1)2 τ
m

and f < g ≤ m is a special case of p` /∈ Rel(sh), which
is described in the following.

Case 2: p` /∈ Rel(sh). We know that ` < h < m,

so d(p, s) > ccτ
2

(τ−1)2 τ
h. Also, τh−1 ≥ τ ` because h ≥

` + 1. Using the triangle inequality and then applying

Lemma 4,

d(p, s) ≤ d(p, x) + d(x, s) <
ccτ

2

(τ − 1)2
τ ` +

ccτ

τ − 1
τh

<
ccτ

2

(τ − 1)2
τh−1 +

ccτ

τ − 1
τh = cc(

τ2

(τ − 1)2
)τh.

This is a contradiction. �

Theorem 7 Algorithm 1 has time complexity

O(ρ
lg(ccτ

cp(τ−1)
)2τ
n).

Proof. We use an amortized analysis for the time com-
plexity of Relatives. While finding relatives, if a node
is inserted into the relative list of another node, we de-
crease one credit from the node whose relative list has
been grown. Note that in Algorithm 2, for a node xf in
Rel(qm) or children of Rel(qm), when xf /∈ Rel(p`) and
p` /∈ Rel(xf), p` is responsible for checking xf . Also, a
child of a node xf is required to be checked against rel-
ative conditions if p` ∈ Rel(xf). In this case, we charge
node xf one credit. From Lemma 3, the relative list for

each node has size O(ρ
lg ccτ

2

cp(τ−1)2). Also, Lemma 1 im-

plies that each node has at most O(ρ
lg ccτcp) children.

Therefore, the total required credit for each node of

the tree is O(ρ
lg ccτ

2

cp(τ−1)2) + 2 · O(ρ
lg ccτ

2

cp(τ−1)2 ρ
lg ccτcp) =

O(ρ
lg(ccτ

cp(τ−1)
)2τ

). So, the total total time complexity is

O(ρ
lg(ccτ

cp(τ−1)
)2τ
n). �

5 Transform cover trees

For a cover tree, there is a trade-off between the height
of the tree and the scale factor. It is not hard to see that
the height of a cover tree has upper bound O(logτ ∆).
So by increasing the scale factor, the height of the tree
will be decreased. Also, from Lemma 1, increasing the
scale factor results in more children for each node of a
cover tree.

In this section, we define two operations to change
scale factor of a given tree. A coarsening operation
modifies the tree to increase the scale factor. Simi-
larly, a refining operation results a tree with smaller
scale factor. Note that in Theorem 5, we assumed that
τ > 2cc

cp
+ 1. However, in many cases we may have

τ ≤ 2cc
cp

+ 1. For example, Beygelzimer et. al. [2] set

τ = 2, and they found τ = 1.3 is even more efficient in
practice. In these situations, we can use the coarsening
operation to get a cover tree with the stronger packing
and covering conditions of net-trees.

5.1 Coarsening

The coarsening operation can be seen as combining ev-
ery k levels of T into one level in T ′. We define a map-
ping between nodes of T and T ′. In this mapping, each

CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

Algorithm 3 Coarsening operation for a given cover
tree

1: procedure Coarsening(T, k)
2: T ′ ← ∅
3: Augment(T, 3ccτ

2

(τ−1)2)

4: for all p` ∈ T in increasing order of level ` do
5: qm ← the lowest ancestor of p` with m′ > `′

6: if p = q then
7: p`

′ ← FindNode(high(p), `′)
8: q`

′+1 ← FindNode(high(q), `′ + 1)
9: else

10: par ← qm

11: relatives← Rel(qm)
12: if m′ > `′ + 1 then
13: h← k(b`/kc+ 2)− 1

14: Relatives(qh, 3ccτ
2

(τ−1)2 , false) ∪ {q
h}

15: relatives← Rel(qh)

16: for all xf ∈ relatives do
17: if f ′ = `′ + 1 then
18: xf ← RestrictedNN(p, xf , k)

19: if d(p, x) < d(p, par) then
20: par ← xf

21: par`
′ ← FindNode(high(par), `′)

22: par`
′+1 ← FindNode(high(par), `′ + 1)

23: p`
′ ← FindNode(high(p), `′)

24: Add p`
′

as a child of par`
′+1

node p` in T maps to a node p`
′

= pb`/kc in T ′. Here,
we use prime as a function that indicates the level of the
node in T ′ that corresponds to p`, i.e. `′ = b`/kc. We
also assume that each point p in T ′ maintains high(p),
which is the highest node of T ′ associated to point p.
Algorithm 3 describes the coarsening operation.
Coarsening uses three procedures Relatives, Re-

strictedNN, and FindNode. The first procedure is
described in Algorithm 2. Note that in Algorithm 3, T
does not have node qk(b`/kc+2)−1. This node is a dummy
and we set qm as its parent. The only reason to use this
dummy node is to bound the running time of the al-
gorithm. The next procedure is RestrictedNN, and
it returns the nearest neighbor to point p among those
nodes of the subtree rooted at xf such that their levels
in T ′ are greater that `′. Finally, FindNode receives a
node p`

′
and a level m′ in T ′, and it tries to find node

pm
′
. If it finds that node, the node is returned. Oth-

erwise, pm
′

will be inserted in T ′ such that it satisfies
all properties of a hierarchical tree. More specifically, if
pm
′

has only one child pe
′

and pe
′

has only one child,
then pe

′
will be removed from T ′ and the only child of

pe
′

will be added as a child of pm
′
. Then, this new node

will be returned.

Theorem 8 Algorithm 3 converts a T ∈ CT(τ, cp, cc)
to T ′ ∈ CT(τk, cp,

ccτ
τ−1).

Proof. The theorem requires showing three invariants
holds: the covering property, the packing property, and
the parent relation. First we prove that T ′ satisfies the
covering property. If re ∈ T is the descendant at most
k levels down from some p`, then from Lemma 4,

d(p, r) <
ccτ

τ − 1
τ ` <

ccτ

τ − 1
(τ ′)`

′
.

Because we are combining sets of k consecutive levels,
it follows that each node in T ′ will have a node in the
level above whose distance is at most this amount. It
follows that T ′ has a covering constant ccτ

τ−1 .

Next, we prove that the packing constant is correct.
If ` = k`′, then the minimum distance between points in
level `′ of T ′ is equal to the minimum distance between
points in level ` of T , which is at least cpτ

` = cp(τ
′)`
′
.

Thus, the points in level `′ of T ′ satisfy the packing
condition and the packing constant is cp.

Now, we prove that this algorithm correctly finds the
parent of p`

′
in T ′. Without loss of generality, let ` be

divisible by k. Also, let s be the closest point to p among
all points in L`+k, and s has been appeared for the first
time in level e such that e′ > `′. So, s is the right parent
for p`. For contradiction, assume that se /∈ Rel(qm) and
se is not resulted from RestrictedNN over all nodes
in Rel(qm). Let th be parent of se. From Lemma 4,

d(p, s) < d(p, q) ≤ ccτ

τ − 1
τm.

We have following cases:

Case 1: d(s, q) > 3ccτ
2

(τ−1)2 τ
m. By the triangle inequal-

ity,

d(s, q) ≤ d(p, s) + d(p, q) < 2d(p, q) ≤ 2ccτ

τ − 1
τm,

which is a contradiction, because τ > 1.

Case 2: d(s, q) ≤ 3ccτ
2

(τ−1)2 τ
m and e > m. In this case,

there exists a node sg with g ≤ m, such that it satisfies
both conditions of relatives. So, sg ∈ Rel(qm) and the
algorithm correctly finds sg. 2

Case 3: d(s, q) ≤ 3ccτ
2

(τ−1)2 τ
m, m ≥ h, and Restrict-

edNN does not find se. Let xf be the highest ancestor
se such that f ≤ m. Then, Lemma 4 implies

d(x, s) ≤ ccτ

τ − 1
τf <

ccτ

τ − 1
τm.

2g can be equal to −∞, in this case we have a long edge from
a node s in a level greater than m to the point s in level −∞.

28th Canadian Conference on Computational Geometry, 2016

Also, by the triangle inequality,

d(x, q) ≤ d(x, s) + d(p, s) + d(p, q)

< d(x, s) + 2d(p, q)

<
ccτ

τ − 1
τm +

2ccτ

τ − 1
τm

<
3ccτ

τ − 1
τm <

3ccτ
2

(τ − 1)2
τm.

Therefore, xf ∈ Rel(qm). Because e′ > `′, Restrict-
edNN returns se as the nearest neighbor to p`, which
is a contradiction. �

Theorem 9 The time complexity of Algorithm 3 is

O(ρ
lg(ccτ

cp(τ−1)
)2τ
n lg k).

Proof. From Theorem 7, T can be augmented with rel-

atives in O(ρ
lg(ccτ

cp(τ−1)
)2τ
n) time. As a preprocessing

step, we can maintain the lowest ancestor of all nodes
in T in O(n) time, which results a constant time ac-
cess in the algorithm. By Lemma 3, the size of each

list of relatives is O(ρ
lg ccτ

2

cp(τ−1)2). The time complexity
of RestrictedNN is O(lg k), because the height of the
subtree is O(k). When Algorithm 3 is processing all
nodes of level ` in T , for each point p in T ′, the level of
high(p) is at most `′+1. So, FindNode requires O(1) to
return a node of T ′ in level `′ or `′+1. Since the number
of edges in T is O(n), finding relatives of dummy nodes
will be done O(n) times for the entire algorithm. Conse-
quently, because cc ≥ cp > 0, the total time complexity

of the algorithm is O(ρ
lg(ccτ

cp(τ−1)
)2τ
n lg k). �

5.2 Refining

Decreasing the scale factor is another useful operation
for cover trees, and we call this operation refining. To
refine a given cover tree T , each level ` in T is split into
at most k levels k`, . . . , (k`+ k− 1) in T ′. Note that by
this division, a node p` in T may be appeared at most k
times in levels k`, . . . , (k`+ k − 1) of T ′. Similar to the
coarsening operation, suppose that each point p in T ′

maintains high(p) which is the highest node associated
to point p. Algorithm 4 describes the refining operation.

Theorem 10 Algorithm 4 turns T ∈ CT(τ, cp, cc) into
T ′ ∈ CT(τ1/k, cp, cc).

Proof. First, we prove that the algorithm correctly
finds parent of each node in T ′. Note that q as the
current parent of p` in T may not be the right parent
of it in T ′ because there may exist a node x` such that
d(p, x) < d(p, q) and the level of x in T ′ be greater than
the level of p in T ′. In this case, p should be inserted as
a child of x. To find the right parent of p`, we search its
nearby nodes and select the closest node that satisfies
the covering property with constant cc.

Algorithm 4 Refining operation for a given cover tree

1: procedure Refining(T, k)
2: T ′ ← ∅
3: Augment(T, 3ccτ

2

(τ−1)2)

4: for all p` ∈ T in increasing order of level ` do
5: Let qm = par(p`)
6: ph

′ ← high(p)
7: if p = q and h′ < k` then
8: pk` ← FindNode(high(p), k`)
9: qk(`+1) ← FindNode(high(q), k(`+ 1))

10: else if p 6= q then
11: par ← qm

12: list←
⋃
sh∈Rel(qm) ch(sh) \ {q`}

13: for all xf ∈ list where f = ` do
14: xh

′ ← high(x)
15: if d(p, x) ≤ ccτ

h′/k and d(p, x) <
d(p, par) then

16: par ← xf

17: Find an i such that cpτ
`+i/k <

d(p, par) ≤ ccτ `+(i+1)/k

18: park`+i+1 ← FindNode(high(par), k` +
i+ 1)

19: park`+i ← FindNode(high(par), k`+ i)
20: pk`+i ← FindNode(high(p), k`+ i)
21: Add pk`+i as a child of park`+i+1

Now, we show that those nodes of T that have ap-
peared for the first time in level ` only required to be
checked. Let x have appeared for the first time in level
h > `. By the parent property of T , d(p, q) < d(p, x),
otherwise p should have x as its parent. Therefore, p
cannot be closer to x than q and we can ignore x in the
search process.

We also show that the right parent of p in T ′ is in the
set of children of relatives of q`+1. Let x` serve as the
parent of p in T ′. So, d(p, x) < d(p, q) ≤ ccτ

`+1. From
the previous part, we know that x` has parent y`+1 and
x 6= y. By the triangle inequality,

d(q, y) ≤ d(q, p) + d(p, x) + d(x, y) < 3cpτ
`+1

<
3ccτ

2

(τ − 1)2
τ `+1.

It implies that y`+1 ∈ Rel(q`+1).
Now, we should find the right level k` + i such that

insertion of p in that level and as a child of x satisfies
both packing and covering conditions with constants cp
and cc, respectively. So, in this way we guarantee that
these constants in T ′ will be the same as T . �

Theorem 11 Algorithm 4 has time complexity

O((ρ
lg(ccτ

cp(τ−1)
)2τ

+ k)n).

Proof. By Theorem 7 we can augment T in

O(ρ
lg(ccτ

cp(τ−1)
)2τ
n) time. From Lemma 3 and Lemma 1,

CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

number of nearby nodes to p` is O(ρ
lg(ccτ

cp(τ−1)
)2τ

). Note
that for each node p` ∈ T in this algorithm, level of
high(p) in T ′ is at most k(`+1). Therefore, FindNode
requires O(k) to return a node which is in a level be-
tween k(`+1) to k` in T ′. Also, finding the right interval
i requires O(lg k). Therefore, the time complexity of the

refining algorithm is O((ρ
lg(ccτ

cp(τ−1)
)2τ

+ k)n). �

6 Conclusion

In this paper, we add an easy to implement condition to
cover trees and we show that a cover tree with a large
enough scale factor is a net-tree. We also proposed a
linear time algorithm to augment nodes of a cover tree
with relatives. Furthermore, we present two linear-time
algorithms to transform a cover tree to a coarser or finer
cover tree. In fact, these two operations are useful to
trade-off between the depth and the degree of nodes in
a cover tree.

References

[1] J. L. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, Sept.
1975.

[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In Proceedings of the 23rd International
Conference on Machine Learning, pages 97–104, 2006.

[3] L. K. Clarkson. Nearest neighbor queries in metric spaces.
Discrete & Computational Geometry, 22(1):63–93, 1999.

[4] R. Cole and L.-A. Gottlieb. Searching dynamic point sets
in spaces with bounded doubling dimension. In Proceedings
of the Thirty-eighth Annual ACM Symposium on Theory of
Computing, pages 574–583, 2006.

[5] R. A. Finkel and J. L. Bentley. Quad trees a data structure
for retrieval on composite keys. Acta Informatica, 4(1):1–9,
1974.

[6] J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners
and applications. Comput. Geom. Theory Appl., 35(1-2):2–
19, Aug. 2006.

[7] A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geome-
tries, fractals, and low-distortion embeddings. In Proceed-
ings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 534–, 2003.

[8] S. Har-Peled and M. Mendel. Fast construction of nets in low
dimensional metrics, and their applications. SIAM Journal
on Computing, 35(5):1148–1184, 2006.

[9] D. R. Karger and M. Ruhl. Finding nearest neighbors in
growth-restricted metrics. In Proceedings of the Thiry-fourth
Annual ACM Symposium on Theory of Computing, pages
741–750, 2002.

[10] R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In Proceedings of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 798–807, 2004.

[11] J. K. Uhlmann. Satisfying general proximity / similarity
queries with metric trees. Information Processing Letters,
40(4):175 – 179, 1991.

[12] P. N. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 311–321, 1993.

