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1 Introduction

The tremendous usefulness of Voronoi diagrams is
tempered by their worst-case O(n⌈d/2⌉) size blowup.
This makes them an obvious target for approxima-
tion, and indeed, several methods have been pro-
posed that produce linear size approximations to
the Voronoi diagram supporting logarithmic-time ap-
proximate nearest neighbor queries. All such meth-
ods use quadtrees to approximate the Voronoi cells.
But what if the input does not have a “bad” Voronoi
diagram? There is a huge gap between the best-case
and the worst case complexity. Sometimes, the ex-
act solution is both simpler and more precise than an
approximation (Figure 1).

We present a new method for constructing approx-
imate Voronoi diagrams that uses the Voronoi dia-
gram of a superset of the input as an approxima-
tion to the true Voronoi diagram. The approximate
Voronoi cells are unions of Voronoi cells of the super-
set. If the input has a Voronoi diagram with good
aspect ratio (and thus has linear size) then the ap-
proximate Voronoi diagram we produce will simply be
the Voronoi diagram of the input. The size of the dia-
gram is O(n log ∆) where ∆ is the spread of the input
(the ratio of largest to smallest interpoint distances).
Moreover, it supports approximate nearest neighbor
queries in time O(log ∆). We also discuss methods for
eliminating the dependence on the spread in the size
and reducing it to O(log n) for queries. The construc-
tion will be based on sparse meshing technology [4].

Formally, a (1 + ε)-approximate Voronoi diagram

of an input set N ∈ R
d is a spatial decomposition of

R
d into n = |N | pieces with the property that exactly

one input point pi lies in each piece, Vi, and for each
x ∈ Vi, |x − pi| ≤ (1 + ε)|x − pj | for all pj ∈ N .

In related work, Har-Peled introduced a method
based on a quadtree construction in which the ap-
proximate Voronoi cells are unions and differences
of quadtree cells[3]. The nearest neighbor search re-
duces to searching the quadtree and assigning a near
input point to each quadtree cell. This approach was
later refined by Sabharwal et al. [7]. More quadtree
based methods were presented by Arya and Malam-
atos [1] and again by Arya et al. [2].

Figure 1: Sometimes, an approximation is not neces-
sary. Here, the diagram on the right achieves both
greater simplicity and greater precision.

2 History DAGs

The history DAG is a point location structure that
models the incremental changes to a cell complex.
We focus on history DAGs over the sequence of
Voronoi Diagrams induced by prefixes Pi ⊂ N , where
Pi = {p1, . . . , pi} for some ordering (p1, . . . , pn) of N

(Figure 2, left).

The history DAG has a node (i, j) for each 1 ≤
i ≤ j ≤ n corresponding to Vorj(pi), the Voronoi
cell of pi in the Voronoi diagram of Pj . It has a
directed edge from (i, j) to (k, j + 1) if and only if
Vorj(pi) ∩ Vorj+1(pk) 6= ∅.

Nearest neighbor queries are answered by searching
the DAG (Figure 2, right). The longest possible path
in the history DAG is known as the depth of the DAG
and bounds the worst-case time for a query.

If δ is the maximum degree of any Voronoi cell at
any time during the incremental construction, then
the history DAG has O(δm) vertices and edges.

3 Construction

Let AVD(N) denote the approximate Voronoi dia-
gram constructed for input N ⊂ R

d. We use the
Sparse Voronoi Refinement meshing algorithm (SVR)
to produce a superset M ⊃ N . SVR can be instru-
mented to keep track of the nearest neighbor among
the inputs of each new vertex.



Figure 2: Left: The link structure of a simple history
DAG. Right: A search through the history DAG.

SVR guarantees that the Voronoi cells all have
some bound on their aspect ratio. Let fS(x) be the
distance to the second-nearest neighbor of x from the
set S. (x is it’s own nearest neighbor if x ∈ S. Define
the Rv := maxx∈V orM (v) |xv|1. By over-refining the
mesh we can guarantee that for all v ∈ M ,

Rv ≤
ε

ε + 2
fN (v). (1)

The history DAG of the mesh is constructed as
part of the SVR algorithm. After the algorithm ter-
minates, the history DAG is kept and used to answer
nearest neighbor queries. The depth of the history
DAG is guaranteed to be O(log ∆) and the degree δ

is bounded by a constant τ independent of n.
An approximate nearest neighbor query for N is

answered by finding the nearest neighbor among the
mesh vertices, M , and returning the nearest input
point to that mesh vertex. Indeed the approximate
Voronoi cell of a vertex p ∈ N , AVD(p) is the union
of Voronoi cells in the mesh of all mesh vertices in
V orN (p).

4 Analysis

Theorem 4.1. Let M ⊃ N be the superset of

the input constructed for AVD(N). For all x,

NNN (NNM (x)) ≤ (1 + ε)NNN (x).

Proof. Let u be the nearest neighbor of x among N .
Let v be the nearest neighbor of x from M and u′

be the nearest neighbor of v from N , then we seek to
show |xu′| ≤ (1 + ε)|xu|.

If u = u′ or v ∈ N , we are done, so suppose v 6∈ N

and u 6= u′, thus fN (v) ≤ |v − u|. This bound on f

and Equation 1 together imply that

|vx| ≤ Rv ≤
ε

ε + 2
fN (v) ≤

ε

ε + 2
|vu| (2)

≤
ε

ε + 2
(|vx| + |xu|) ≤ ε|xu|. (3)

1Slight modification is necessary at boundaries.

Collecting terms from this equation then yields |vx| ≤
ε|xu|. This fact, the triangle inequality, and the ob-
servation |vu′| ≤ |vu| imply

|xu′| ≤ |xv| + |vu′| ≤ |xv| + |vu| (4)

≤ 2|xv| + |xu| ≤ (1 + ε)|xu|. (5)

The following Theorem follows in a straightforward
way from the properties of the SVR algorithm [4].

Theorem 4.2. The size of AV D(N) is O(n log ∆
ε ).

The depth of the corresponding history DAG is

O(log ∆
ε ). Both terms suppress constants that may

be exponential in the dimension.

5 Extensions

We believe it is possible to extend these results to
achieve fully linear size approximate Voronoi dia-
grams by applying ideas from linear-size meshing [5].
We also believe it is possible to replace the log ∆

ε with
log n

ε by applying methods from geometric separator
theory [6]. This is an area of ongoing research.
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