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Abstract

There are many depth measures on point sets that yield
centerpoint theorems. These theorems guarantee the
existence of points of a specified depth, a kind of geo-
metric median. However, the deep point guaranteed to
exist is not guaranteed to be among the input, and often,
it is not. The α-wedge depth of a point with respect to
a point set is a natural generalization of halfspace depth
that replaces halfspaces with wedges (cones or cocones)
of angle α. We introduce the notion of a centervertex,
a point with depth at least n

d+1 among the set S. We

prove that for any finite set S ⊂ R
d, a centervertex ex-

ists. We also present a simple algorithm for computing
an approximate centervertex.

1 Introduction

Many different notions of data depth have been pro-
posed as ways to generalize the rank and the median
of an ordered list to the case of higher dimensional
point sets. Several nice surveys are available on different
depth measures and how to compute them [12, 2, 11].
Aloupis et al give some lower bounds for computing
depth [3]. One of the most enduring definitions of data
depth is the halfspace depth, also known as the Tukey
depth or location depth. The halfspace depth of a point
p relative to a point set S is defined as the minimum
number of points halfspace containing p.

Definition 1.1 Given a set S ⊂ R
d, the halfspace

depth of a point x ∈ R
d is

Dπ(x) = min {|H ∩ S| : H is a closed halfspace, and x ∈ H}

An α-wedge is defined by an apex t and an axis r
and is the set of all points p ∈ R

d such that the line
segment pt makes an angle of at most α/2 with r. The
alpha-wedge depth is a natural generalization of halfs-
pace depth in which the halfspace is interpreted as a
π-wedge. It was first introduced by Erickson et al.[10]
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Definition 1.2 Given a set S ⊂ R
d, the α-wedge

depth of a point x ∈ R
d is

Dα(x) = min {|W ∩ S| : W is an α-wedge with apex x}

The definitions are equivalent when α = π, so the
given notation is not ambiguous. In this extended ab-
stract, we focus on the interesting properties of the
D3π/2.
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Figure 1: The α-wedge depth counts points in wedges
rather than halfspaces.

The Centerpoint Theorem states that there exists a
point in R

d with halfspace depth at least n
d+1 [14, 9].

Because no point can have halfspace depth greater than
n
2 , a centerpoint is a constant-factor approximate me-
dian.

We distinguish between input vertices and points in
space which may not be in the input. One difficulty of
traditional measures of data depth is that the median
(or even an approximate median) is often not among
the input vertices. We show that for α > 3π/2, one to

always find a point with α-wedge depth at least
⌈

n
d+1

⌉

among the input vertices (Section 3). We call such a
point, a centervertex. This is a major advantage because
for many inputs, in particular sets in convex position,
the halfspace depth may be O(1) for all s ∈ S.

The strength of the α-wedge depth to always iden-
tify vertices of nontrivial depth among the input is also
interesting from the perspective of algorithm design.
Many geometric divide and conquer algorithms can ben-
efit from pivoting on a centerpoint. However, if the cir-
cumstances demands that the pivot be a vertex in the
original set, a centervertex may be a better option.
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Figure 2: On the left, the center region for α = π is the
set of all centerpoints. On the right, the center region
for α > π replaces lines with circular arcs, expanding
the set of centerpoints.

In Section 4 we extend our analysis of α-wedge depth
at the input vertices. We also address the question of
when it is possible to use values of α less than 3π/2
and still guarantee a linear depth vertex. Moreover, we
show that the expected depth at the vertices is linear.
Sections 5 addresses the computation of center vertices.

2 Related Work

The notion of α-wedge depth was introduced by Erick-
son et al., who proved several guarantees on the min-
max depth point as α is allowed to vary[10]. The level
sets of the wedge depth in the plane were studied by
Avis et al. as way to describe the “shape” of a point
set[5]. Abellenas et al. studied subsets of S called (α, k)-
sets. These are the sets that can be separated by an
α-wedge from the rest of S[1].

Of the many definitions of data depth used in prac-
tice, a couple arise quite naturally out of discrete convex
geometry: the halfspace depth, also known as Tukey
depth or location depth; the regression depth; and the
simplicial depth. As previously noted, the halfspace
depth of a point x is the minimum number of vertices
of S contained in any closed halfspace containing x [18].
The regression depth of a hyperplane P relative to S is
the minimum number of vertices that P passes through
in a continuous rotation to vertical [15]. The simpli-
cial depth of a point x is the number of simplices with
vertices in S that contain x.

In each case, non-trivial lower bounds are known for
the deepest point, or median. For the Tukey depth,
The Centerpoint Theorem guarantees that the median
has depth at least n

d+1 [9]. Bárány showed a non-trivial
lower bound for the simplicial depth median[6] (see also
[17] and [16]). Wagner shows that in fact a centerpoint
of S is bounded by a constant fraction of all simplices
with vertices in S [19]. The use of a centerpoint as a
good candidate for other depth measures is a recurring
theme in the literature. Amenta et al. showed that
among any hyperplane arrangement, there is always one

with regression depth at least n
d+1 [4]. Their proof relies

on a clever use of topological fixed point theorems and
centerpoints. In this paper, we also use the Centerpoint
Theorem as a starting point for finding points of high
α-wedge depth.

3 The Centervertex Theorem

Any notion of data depth naturally gives rise to a
median, or a point of maximum depth. The classic
Centerpoint Theorem of Danzer et al. establishes a
lower bound on the depth of the median for halfspace
depth [9]. For any set S ⊂ R

d and α < π, the Dα-
median is at least the halfspace depth so the Center-
point Theorem implies an immediate lower bound on
the Dα-median. However, we are interested in picking
a median from among the vertex set S. For the Dπ-
median and many other depth measures, the median
may not (and most likely is not) among S. In fact, for
the simple case of vertices in convex position, Dπ(s) = 1
for every vertex s ∈ S.

The main result of this section is that among any set
of vertices, there exists a vertex s such that D3π/2(s) ≥

n
d+1 . We call such a point a centervertex. The proof of
the Centervertex Theorem (Theorem 2 below) depends
on the following Lemma relating D3π/2 at vertices and
Dπ at arbitrary points.

Lemma 1 Given a set S ⊂ R
d, a point x ∈ R

d and

a vertex s ∈ S, if s is the kth nearest vertex to x then

D3π/2(s) ≥ Dπ(x) − k + 1.

Proof. It suffices to show that for any 3π/2-wedge W
with apex at s, |W ∩ S| ≥ Dπ(x) − k + 1.

First consider the case where x ∈ W . Then there ex-
ists a closed halfspace H containing x that is contained
entirely in W . So, H ∩ S ⊆ W ∩ S and thus

|W ∩ S| ≥ |H ∩ S| ≥ Dπ(x) ≥ Dπ(x) − k + 1.

We now consider the case where x /∈ W . Then x is
in the cone W ′ = R

d \ W . Wedge depth is invariant
under dilation and rigid transformation so we may as-
sume without loss of generality that s is at the origin,
the wedge axis is (0, . . . , 0,−1), and |x| = 1. We choose
a vector vx = (x1, . . . , xd−1,−xd) to define a hyper-
plane H through the point x that partition the space
into (H+, H−) the halfspaces above and below H re-
spectively (H+ is closed and H− is open). There are at
most n − Dπ(x) vertices of S in H+.

Because W ′ ⊂ H+ ∪ (H− \W ), it will suffice to show
that there are at most k − 1 vertices of S in H− \ W .

Let p be any point in S ∩ (H− \ W ). Since p ∈ H−,
we can write it as p = rx+ tq where r ∈ [0, 1], q ·vx = 0,
and |q| = 1. Since p ∈ W ′, we know that 2p2

d > |p|2.
Substituting p = rx + tq in this inequality yields

2(r2x2
d + 2rtxdqd + t2q2

d) ≥ r2 + 2rt(x · q) + t2.
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Since q·vx = 0, it follows that q·x = 2xdqd. Substituting
this in the above inequality, we get

2(r2x2
d + t2q2

d) ≥ r2 + t2.

We can rearrange this to see that t2 ≤ r2 2x2
d
−1

(1−2q2
d
)
. If

θ is the angle that x makes with the cone axis then
xd = cos θ and qd ≤ sin θ. Therefore, x2

d + q2
d ≤ 1 and

2x2
d
−1

1−2q2
d

≤ 1. We can conclude that t ≤ r, and thus,

|x − p| ≤ |x − xr| + t < (1 − r) + r < 1 = |x − s|.

This means that every such p is a nearer neighbor to x
than s. Because s is the kth nearest neighbor to x, there
can be at most k− 1 such points p ∈ S ∩ (H− \W ). �

p

x

s

α

Figure 3: The triangle is H− ∩ W ′ and is completely
contained in the ball centered at x.

Theorem 2 (The Centervertex Theorem) For all

n point sets S ⊂ R
d, there exists a vertex s ∈ S with

D3π/2 ≥ n
d+1 .

Proof. Let c be a centerpoint of S. By the Centerpoint
Theorem, Dπ(c) ≥ n

d+1 . Let s be the nearest vertex in S
to c. The result follows directly from Lemma 1 applied
to the point c and vertex s. �

4 Bounding the wedge depth at vertices

We are interested in the cone depth at vertices in S.
The following corollary to Lemma 1 gives a simple way
to bound the cone depth at the vertices.

Lemma 3 Given S ⊂ R
d and s ∈ S,

D3π/2(s) ≥ maxx∈V or(s)Dπ(x),

where V or(s) is the Voronoi cell of s, i.e the set of all

points in R
d whose nearest vertex in S is s.

Proof. The proof is immediate from Lemma 1.
�

If we assume that the dimension d of the point set is a
constant, Theorem 2 says that for some s ∈ S, D3π/2(s)
is Θ(n). In fact, the average depth of the vertices in S
is also linear as shown in the following Theorem.

Theorem 4 Given S ⊂ R
d, if s ∈ S is sampled uni-

formly at random E[D3π/2(s)] ≥
n

2(d+1)2 .

Proof. Let c be a centerpoint of S. There are
⌈

n
d+1

⌉

vertices s1, . . . , s⌈ n

d+1⌉
∈ S such that D3π/2(si) ≥ i,

namely the
⌈

n
d+1

⌉

closest vertices to c. This follows

from Lemma 1. Thus we can bound the average 3π/2-
wedge depth as follows.

1

n

∑

t∈S

D3π/2(t) ≥
1

n

⌈ n

d+1⌉
∑

i=1

D3π/2(si) (1)

≥
1

n

⌈ n

d+1⌉
∑

i=1

i (2)

≥
n

2(d + 1)2
. (3)

�

The linear expected depth of the points in S may
have ramifications for randomized algorithms, as it im-
plies that a randomly chosen point can be used to gen-
erate a roughly balanced geometric partition of S. The-
orem 4 also leads to a randomized algorithm for com-
puting approximate centervertex in sub-linear time (see
Section 5).

5 Computing Center Vertices

The proof of the Centervertex Theorem implies an al-
gorithm for computing a centervertex. First compute a
centerpoint c and then return the nearest vertex to c.
The only difficulty with such an algorithm is that it is
not known how to compute a centerpoint in time poly-
nomial in n and d. The best known method is due to
Chan and will produce a Tukey median in time O(nd−1)
randomized time [7]. Thus, we can easily find center-
points in O(nd) time if we use the Chan algorithm as a
black box.

A more time efficient approach is to use an approxi-
mate centerpoint. The Iterated-Tverberg algorithm of
Miller and Sheehy can compute a point x guaranteed to

have Dπ(x) ≥ n
2(d+1)2 in O

(

n1+lg(d+2)

(d+1)2 lg(d+2)−1

)

time [13].

Their algorithm is a derandomization of an algorithm of
Clarkson et al. that computes a point of similar depth
with high probability in time O(n(lg n)lg d) [8]. The ran-
domized algorithm works by sampling the input and can
be made to run in sub-linear time.
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To extend the algorithm for an approximate center-
point to an algorithm for an approximate centervertex,
we sample O(d2) points and return the nearest point in
the sample to the approximate centerpoint c. With high
probability, the point returned is among the O(n/d2)
nearest neighbors of c. Thus Lemma 1 implies that the
depth is linear. Alternatively, we can search for the ex-
act nearest neighbor of the approximate centerpoint in
linear time.

6 Conclusion

We have explored the problem of finding points of linear
depth among the input set S. Although most traditional
depth measures do not make any guarantees about the
depth of the points in S, we have shown that the 3π/2-
wedge depth guarantees that some some s ∈ S will be
a so-called centervertex. Moreover, we have shown how
to bound the α-wedge depth in terms of the halfspace
depth of nearby points and used this to bound D3π/2

at input points. This led to some straightforward al-
gorithms for computing deep vertices, including a ran-
domized approximate centervertex algorithm that can
be made to run in sublinear time.

References

[1] M. Abellenas, M. Claverol, F. Hurtado, and
C. Seara. (α, k)-sets en el plano. In Proc. III Jor-
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