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1 Why Fat Voronoi Diagrams?

Voronoi refinement is a powerful tool for efficiently gen-
erating meshes for finite element simulation. The clas-
sic definition of quality in a mesh can be achieved by
bounding the aspect ratio of the Voronoi cells measured
as the ratio of the circumscribing and inscribing radii
as measured from the site. There are tight upper and
lower bounds on the number of extra points needed to
achieve such a Voronoi diagram. The use of good as-
pect ratio Voronoi diagrams is central to both quadtree
methods [1]1 and Voronoi refinement algorithms [3].

Unfortunately, bounding the aspect ratio in this
way is often an overkill, with lower bounds on the size
and runtime that depend on the spread of the input
set, a geometric quantity that may be unbounded in n.
In this paper, we give a relaxed definition of Voronoi
cell quality called fatness that captures many of the
nice properties of the old definition without being sub-
ject to the lower bounds on the size. We give upper
and lower bounds on the complexity of such Voronoi
diagrams and provide an algorithm to generate such
a Voronoi diagram with only a linear number of ex-
tra points. In future work we hope to understand fat
Voronoi diagrams well enough to design the next gen-
eration meshing algorithm with them.

The first and simplest question that arises in this
area is whether or not a cell in a fat Voronoi diagram
can have an unbounded number of neighbors. We prove
that this is not possible for fat Voronoi diagrams in the
plane and conjecture that similar bounds hold in higher
dimensions. As Figure 1 demonstrates, this is a prop-
erty peculiar to fat Voronoi diagrams; it holds neither
for general fat complexes nor for weighted Voronoi di-
agrams.
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1The corners of a balanced quadtree form a good aspect ratio
Voronoi diagram.

Figure 1: Right: A fat Voronoi cell can have arbitrarily many
neighbors but at least some of them must be skinny. Left: If
weights are allowed on the vertices, the corresponding weighted
Voronoi diagram can be fat and yet have unbounded maximum
degree.

2 Definitions and Notations

Let M be a finite set of points in R
d that we call

vertices. We assume there is some compact, convex
bounding region R ⊂ R

d that contains all of M . The
Voronoi cell of a vertex v ∈ M is the set of points in
R for which v is the nearest neighbor in M , and is de-
noted Vor(v). The Voronoi diagram of M is the cell
complex formed by the Voronoi cells of M , the bound-
ing region R, and the corresponding intersections. The
cells are Voronoi diagram are called faces.
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Figure 2: The cell on the left has good aspect ratio. The cell
on the right is fat but it does not have good aspect ratio.

The dual complex to the Voronoi diagram is the
Delaunay triangulation. For points in general posi-
tion, the Delaunay triangulation is a simplicial com-
plex. The set of simplices incident to a vertex p is
called the star of p and the boundary of the star of p

is called the link of p.
The in-ball of Vor(v) is the largest inscribed ball



and its radius is rv. The out-ball of Vor(v) is the small-
est circumscribed ball and its radius is Rv. A Voronoi
cell, Vor(v), is τ -fat if Rv

rv
≤ τ . The classic definition

of a good aspect ratio Voronoi cell, in which the in-ball
and out-ball are centered at v, is a special case of fat-
ness, but fat cells do not necessarily have good aspect
ratio (see Figure 2).

3 Global Upper Bounds

Generic fat complexes, which are not necessarily Voronoi
diagrams, are well studied in the literature. There are
several definitions of “fatness”, but in the case of con-
vex cells, they are equivalent up to constants. The only
relevant difference is whether the definition uses a ratio
of one-dimensional values (such as radii in our defini-
tion), or a d-dimensional ratio of volumes. The former
definition makes explicit the exponential dependence
on d.

Global upper bounds on complexity exist for gen-
eral fat complexes. The classic approach to bounding
fat complexes is to bound the number of larger neigh-
bors of any cell [5]. This bounds the total number of
neighbor relations in the complex, thus bounding above
the total number of d − 1-faces of a τ -fat complex by
(4τ)dn. This bounds the average number of neighbors
per vertex by (4τ)d. In the special case of fat Voronoi
diagrams, these arguments can be extended to count
the total count of all faces of all dimensions, giving
an upper bound of (4τ)d2

n. This approach has been
shown to work in [2], although with less attention to
the constant depending on dimension.

We wish to strengthen these global bounds by show-
ing that in the special case of a Voronoi complex, the
size of a neighborhood is locally bounded.

4 Local Upper Bounds

The upper bounds of the previous section rely only
on the fatness of the complex. They do not use any
properties intrinsic to Voronoi diagrams. A complex
may be fat and yet have unbounded degree. Thus, the
guarantees are global rather than local. In the plane,
it is possible to prove a local bound, namely that every
cell has at most a constant number of neighbors.

Let Vor(P ) be a fat Voronoi diagram. For any p ∈
P , let Qp be the set of Delaunay neighbors of p. That
is, for each q ∈ Qp, there is a clockwise oriented Voronoi
edge (u, v) dual to pq in Vor(P ). For input points in
general position, there is a unique edge eu (ev) in the
Voronoi diagram that emanates from u (respectively v)
but is not a boundary edge of Vor(p). Let ℓu and ℓv be
the lines containing eu and ev respectively. We define
two relevant angles:

θq = the angle between ℓu and ℓv.
σq = ∠upv.
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Figure 3: The Voronoi cell and the dual Delaunay link. There
is a natural tradeoff between σ and θ. Although, the Voronoi
cell is convex, the Delaunay link may not be.

We observe the following fact about these angles.

2π =
∑

q∈Qp

θq =
∑

q∈Qp

σq. (1)

This gives us two ways to measure the angles, one
from the perspective of the Delaunay triangulation and
the other from the perspective of the Voronoi diagram.
Ultimately, we will show that at least one of σq or θq

must be large for each neighbor q. This will allow us
the bound the size of Qp.

Let p be any vertex of P and let q be any neighbor
in Qp. To simplify notation, let σ = σq and let θ =
θq. The following three lemmas capture the relevant
tradeoffs between σ and θ. The proofs are omitted for
space.

Lemma 1. If θ ≥ 0 then max{σ, θ} ≥ arcsin 1
4τ

.

Lemma 2. If θ < 0 then σ ≥ arcsin 1
τ
.

Lemma 3. If θ < 0 then σ + θ ≥ 0.

Theorem 4. If Vor(M) is τ-fat then for all p ∈ M ,

|Qp| ≤ 6π

arcsin 1
4τ

.

Proof. Partition Qp based on the magnitude of θ into
Q− = {q ∈ Qp : θq < 0}, Q+ = Qp\Q−. We will bound
the size of each set individually. Using Lemma 2, we
derive the following.

2π =
∑

q∈Qp

σq ≥
∑

q∈Q−

σq ≥ |Q−| arcsin
1

τ
.

This implies that |Q−| ≤ 2π

arcsin 1
τ

. We now bound |Q+|



as follows.

4π =
∑

q∈Qp

σq + θq [by Equation (1)]

≥
∑

q∈Q+

σq + θq [by Lemma 3]

≥
∑

q∈Q+

max{σq, θq} [because σq, θq ≥ 0]

≥ |Q+| arcsin
1

4τ
[by Lemma 1].

This implies that |Q+| ≤ 4π

arcsin 1
4τ

. So we see that

|Qp| = |Q−|+|Q+| ≤ 2π

arcsin 1
τ

+
4π

arcsin 1
4τ

≤ 6π

arcsin 1
4τ

.

This result for planar Voronoi diagrams leads us to
the following conjecture.

Conjecture 1 (The Fat Voronoi Conjecture). If Vor(M)
is τ-fat then every vertex p in M has at most 2O(d)

neighbors, where τ is a constant independent of d.

The Fat Voronoi Conjecture does not imply an asymp-
totic improvement on the bound on the total number
of faces of the Voronoi diagram. For example, it is easy
to see that the total number of faces can still be 2O(d2).
However, we further conjecture that the situation is not
as bad as that.

Conjecture 2 (The Strong Fat Voronoi Conjecture).
If Vor(M) is τ-fat for then for every vertex p in M ,

Vor(p) has at most 2O(d log d) faces, where τ is a con-

stant independent of d.

The Strong Fat Voronoi Conjecture would imply
the lower bound we derive in Theorem 5 is tight for
constant values of the fatness parameter, τ .

5 Lower Bounds

In this section, we prove a nontrivial lower bound on
the number of faces of a fat Voronoi cell. For constant
τ , this bound is 2Ω(d log d), which is somewhat surprising
given that the integer lattice Z

d has Voronoi cells with
only 2d faces. This discrepancy arises because cubes
are not fat as their dimension increases; a d-cube has
fatness

√
d. The following theorem captures exactly

this tradeoff in the lower bound.

Theorem 5. If Vor(M) is a τ-fat Voronoi diagram,

then it has at least 2Ω(d)
(√

d
τ

)d

n faces.

Proof. For any vertex p ∈ M , let s1 . . . sk be the sim-
plices of Del(M) with a vertex at p. For any set of
vectors A let cone(A) denote the non-negative linear
combinations of vectors of A. We recall that the polar
A◦ of a set A ⊂ R

d is defined as.

A◦ = {y ∈ Rd : y · a ≤ 1 for all a ∈ A}.

Let Cs be cone({p − q : q ∈ S}). For any simplex s

there is a dual circumcenter x at a corner of Vor(p).
Let Cx be {y − x : |y − p| ≤ |y − q| for all q ∈ s}. Note
that Cs = C◦

x.
The Voronoi cell Vor(p) is fat and thus contains an

in-ball b. If we let Bx denote cone({y − x : y ∈ b}),
then we have Bx ⊂ Cx. Recall that polarity reverses
containment, so C◦

x ⊂ B◦. Letting Bs be the cone
polar to Bx, it follows that

Cs = C◦
x ⊂ B◦

x = Bs.

Let θx and θs be the half-angles of the circular cones
Bx and Bs respectively. Because the cones are polar
to each other, θx + θs = π

2 . Because Vor(p) is τ -fat,
θx ≥ arcsin 1

2τ
. Otherwise, b would not fit in Cx. So,

cos θs ≥ cos

(

π

2
− arcsin

1

2τ

)

=
1

2τ
.

Let B be the unit ball centered at the origin. We
can now pack the simplicial cones Csi

restricted to B

and apply Lemma 6.

Γd =
k

∑

i=1

vol(Csi
∩ B) ≤ kΓd

2O(d)
(√

d
τ

)d
. (2)

It follows that k, the number of simplices at p, is at

least 2Ω(d)
(√

d
τ

)d

.

Lemma 6. For all simplices s with a vertex at p,

vol(Cs ∩ B) ≤ Γd

2O(d)
(√

d
τ

)d
.

Proof. Let H1 and H2 be halfspaces normal to the axis
of Bs at distances 1

2τ
and 1 respectively. Since B ⊂ H2,

it follows that

vol(Cs ∩ B) ≤ vol(Cs ∩ H2). (3)

The two sets Cs ∩H2 and Bs ∩H2 are each the convex
closure of a base and a vertex at the origin. Moreover,
their bases both lie in the boundary of H2 so the ratio
of their volumes is equal to the ratio of their bases.
Since the base of Cs ∩ Hs is a d− 1-simplex contained
in the d−1-dimensional ball that is the base of Bs∩H2,



the ratio of their volumes is bounded using Stirling’s
approximation as follows.

vol(Cs ∩ H2)

vol(Bs ∩ H2)
≤ vol(S)

Γd−1
≤ 1

2O(d)d
d
2

, (4)

where S represents the regular d − 1-simplex inscribed
in the d− 1-dimensional unit ball. By scaling BS ∩H2

down by a factor of 2τ , we get BS ∩H1, and therefore

vol(BS ∩ H2) = (2τ)dvol(BS ∩ H1). (5)

Since BS ∩ H1 ⊂ B, we have that

vol(BS ∩ H1) < Γd. (6)

Together, Equations (3), (4), (5), and (6) imply the
statement of the lemma.

6 A Fat Voronoi Algorithm

In previous work, we showed how to construct a linear
size superset of a point set whose Delaunay triangula-
tion has linear size [4]. It is possible to modify that al-
gorithm to produce a superset whose Voronoi diagram
is fat. The key to linear size meshing is to decom-
pose the point set into so-called well-paced sets. These
sets are ordered so that each point is near a face of
the Voronoi diagram of its predecessors. A well-paced
set of points can be extended to a good aspect ratio
Voronoi diagram (in classic sense) using only a linear
number of extra points.

Since not all point sets are well-paced, it is neces-
sary to divide up space into a hierarchy of regions so
that at any level, the points appear well-paced and a
lower level looks like a single point.

Figure 4: Long, skinny Voronoi cells are truncated by an ap-
propriately size bounding cage.

Consider an ordering (p1, . . . , pn) on the input set
P . Let Pi = {p1, . . . pi} be the ith prefix. We can
define two related distances on the prefixes by taking
the distance to the nearest and second nearest neigh-
bor. Formally, di(x) = min pj ∈ Pi|x− pj | and fi(x) =
min pj , pk ∈ Pi max{|x − pj |, |x − pk}. The set P is θ-
well-paced with respect to the given ordering and the

bounding region R if di(pi+1)
fi(pi+1) > θ for all i = 2 . . . n − 1

and |p1−p2|
radius(R) > θ.

The FatVoronoi algorithm works by finding a max-
imal θ-well-paced subset S. A standard Voronoi refine-
ment algorithm will only produce linearly many Steiner
points for a θ-well-paced input. All input vertices in
P \S must be significantly closer to one point of S than
any other, for otherwise they would be θ-well-paced.
A bounding cage composed of a constant number of
points is placed around any vertex of S that is the
nearest neighbor of a point in P \S. These cages guar-
antee that non-fat cells of Vor(P ) do not “escape” (see
Figure 4). Moreover, the new vertices added for the
cage all have Fat Voronoi cells. The cages and the in-
put vertices they contain are handled recursively and
the final output is the Voronoi diagram of the union
of the outputs for each recursive call. In the end, we
achieve the following Theorem.

Theorem 7. Given n points P ⊂ R
d, the FatVoronoi

algorithm can produce a superset M of P of size 2O(d)n

such that Vor(M) is O(1)-fat in time Od(n
2) time.

7 Remarks

There is at least some bound on the number of neigh-
bors of a Fat Voronoi diagram in general dimension.
Recall the classic definition of the aspect-ratio ρ of a
Vor(v) as the ratio of the radii of the smallest out-ball
to largest in-ball, where the balls must be centered at v.
The packing arguments bounding the number of larger
neighbors[5] can be extended to the following:

Lemma 8. If Vor(P ) is τ-fat and Vor(v) has aspect

ratio ρ, then v has at most 2O(d) log ρ neighbors.

While this lemma is much weaker than Conjecture
1, it may at least provides an approach to a more
generic high dimensional argument.
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