
Beating the Spread: Time-Optimal Point Meshing∗

Gary L. Miller† Todd Phillips‡ Donald R. Sheehy§

June 6, 2011

Abstract

We presentNetMesh, a new algorithm that produces a conforming Delaunay mesh for point
sets in any fixed dimension with guaranteed optimal mesh size and quality. Our comparison
based algorithm runs in time O(n log n+m), where n is the input size and m is the output size,
and with constants depending only on the dimension and the desired element quality bounds.
It can terminate early in O(n log n) time returning a O(n) size Voronoi diagram of a superset
of P with a relaxed quality bound, which again matches the known lower bounds.

The previous best results in the comparison model depended on the log of the spread of
the input, the ratio of the largest to smallest pairwise distance among input points. We reduce
this dependence to O(log n) by using a sequence of ǫ-nets to determine input insertion order
in an incremental Voronoi diagram. We generate a hierarchy of well-spaced meshes and use
these to show that the complexity of the Voronoi diagram stays linear in the number of points
throughout the construction.

∗Partially supported by the National Science Foundation under grant number CCF-0635257.
†Department of Computer Science, Carnegie Mellon University, glmiller@cs.cmu.edu
‡Department of Computer Science, Carnegie Mellon University, tp517@cs.cmu.edu
§Department of Computer Science, Carnegie Mellon University, dsheehy@cs.cmu.edu

1

1 Introduction

In this paper we present a new algorithm for meshing point sets in fixed dimension. This is the
first algorithm we know of that is work-optimal in the comparison-based model in the sense of
[Yao81]. Known work-efficient algorithms for meshing are one of two types. The first of these
are based on incremental refinement of the Voronoi diagram or Delaunay triangulation. The only
work-efficient of these in higher dimension performs a recursive Voronoi refinement where at all
times a “quality” Voronoi mesh is maintained. Unfortunately, this leads to work of O(n log∆+m)
where n is the input size, m is the output size and ∆ is the spread, the ratio between the diameter
of the bounding box and the distance between the closest pair of features [HMP06, HMP07]. The
second type uses a quadtree to generate a mesh. Work-efficient versions use bit manipulation of
the coordinates of the points to efficiently help with the point location [MV00, BET99, HPÜ05].
These algorithms are not optimal in the comparison model and possibly more importantly, it is not
known how to efficiently handle higher dimensional features (segments, facets) with these methods.

Our algorithm uses range space ǫ-nets to determine the insertion order of the input points to
improve the work bound for point sets with large spread. Clarkson used a similar method for doing
point location in a Voronoi diagram [Cla88]. In our approach, since we also add some Steiner points,
we can guarantee that the total size of the intermediate Voronoi diagrams are only linear size. This
insertion order requires us to maintain a Voronoi diagram that need not have good aspect ratio in
the usual sense.

Our algorithm will generate a linear-size mesh in fixed constant dimensions. In their 1994
paper Bern, Eppstein, and Gilbert showed how to generate such a linear-size mesh with no large
angles [BEG94]. In a later paper we gave a Voronoi refinement algorithm that also generates linear
size meshes, [MPS08] but had a running time of only O(n log∆).

Because a standard good aspect ratio mesh is too large, we maintain a weaker but sufficient
condition, bounded ply. Throughout the life of the algorithm we maintain a mesh that is of bounded
ply which will be used to bound the point location work and the work to determine the insertion
order:

Definition 1. A Voronoi Diagram of a domain Ω is k-ply if for every point x ∈ Ω at most k
circumballs of the Delaunay simplices contain x in their interior.

Using the bounded-ply property we can afford to maintain a copy of each uninserted point in
each Delaunay ball that contains it. We pick an insertion ordering so that the number of uninserted
points stored in a Delaunay ball decreases geometrically, which we achieve using ǫ-nets.

Let P be the input points andM be points that have been inserted into the mesh so far including
the Steiner points. We say that M is an ǫ-net for P if any ball whose interior is disjoint from M
contains at most ǫn points from P . We show, given a mesh M that is an ǫ-net, how to pick at
most a constant number of points per Delaunay ball so that after their insertion the new mesh
will be a ǫ/2-net. Thus, a round consists of adding these new input points plus a constant factor
more Steiner points so that we recover a bounded-ply mesh. After O(log n) rounds the process
terminates with a constant ply mesh of size O(n). This output can then be finished to a standard
good aspect ratio mesh in output sensitive O(m) time if desired.

In this paper we only consider the case of point set inputs. We feel that the methods proposed
should readily be applicable to inputs with higher-dimensional features, such as edges and faces,
and with optimal runtime.

1

2 Beating the Spread

The spread of a point set is the ratio of the largest to smallest interpoint distances, and is denoted as
∆. It is a (geo)metric rather than a combinatorial property; given a set of points P , its cardinality
may be n but its spread is not in general bounded by any function of n. It is not uncommon to
see a dependence on the spread in the analysis of algorithms in computational geometry and finite
metric spaces. Though rarely a problem in practice, it does thwart the most basic principle in the
analysis of algorithms, to bound the complexity in terms of the input size.1

Consider two classic data structures, the quadtree and the kd-tree. The quadtree partitions
space geometrically, breaking squares into 4 pieces of equal size. The kd-tree partitions the input
points combinatorially into sets of equal cardinality. These data structures demonstrate the
difference between geometric and combinatorial divide and conquer. The quadtree has depth log∆
whereas the kd-tree has depth log n. Unfortunately, many computational problems from nearest
neighbor search to network design problems depend on (geo)metric information that is lost when
doing a combinatorial divide and conquer. Thus, for many problems, the best known algorithms
depend on the spread in either time or space complexity or both.

One approach to dealing with the spread is to restrict the computational model. If coordinates
are restricted to be log n-bit integers then the spread is O(n). If we use floating point numbers, the
spread is O(2n). These assumptions about the bit representation of the input also allow for fast
computation of logarithms as well as the floor and ceiling functions. These computations are usually
omitted from the basic operations of the real RAM model often used in computational geometry
to extend the comparison sorting model from the real line to d-dimensional Euclidean space. In
their work on metric nets, Har-Peled and Mendel correctly argue that if one can do arithmetic
in constant time, it is natural to expect also to perform other operations of size O(log log∆) in
constant time [HPM06]. This is certainly the case for many practical implementations of geometric
algorithms. However, it is interesting, both in theory and in practice to explore ways of eliminating
the dependence on the spread without resorting to specialized bit operations–in theory because it
probes the limits of an important computational model and in practice because it allows one to work
with a minimal set of primitives with minimal assumptions about the low-level data representation.2

In mesh generation, a dependence on the spread creeps in from two different sources, in the
output size and the in the cost of point location. The previous state of the art in comparison based
point meshing requires O(n log∆+m) work, where the first term is the cost of point location and
the second is the output sensitive term. Even for point set inputs, the lower bounds on quality
meshes imply that m may also depend on the spread. Thus, to contest with the spread, we must
both optimize point location and also relax the quality condition. This is why our algorithm has
two phases, one that produces a linear size Voronoi diagram of a superset in O(n log n) time and
one that refines that mesh to quality in O(m) time.

3 Voronoi Refinement Basics

Voronoi Diagrams. The Voronoi diagram of a finite point set P in R
d, denoted VorP , is the

polyhedral complex decomposing R
d into regions based on the nearest neighbor among the points

of P . The regions are called Voronoi cells. Since some cells are unbounded, we assume there is a

1One can get around this by making assumptions about the bit representations of the inputs. We will address
this as well.

2Recall that in the popular CGAL library, all primitives are implemented for several different kernels, all use a
small, unified interface.

2

suitably sized bounding ball around the points of P and for a point p ∈ P we write VorP (p) to
denote the intersection of the Voronoi cell with this ball.

The in-radius of VorP (p), denoted rp, is the radius of the largest ball centered at p that is
contained in VorP (p). The out-radius, Rp is the radius of the smallest ball centered at p that

contains VorP (p). The aspect ratio of VorP (p) is
Rp

rp
. When viewed as cell complex, the vertices

or 0-faces of VorP (p) are called the corners to avoid confusion with the notion of a mesh vertex
introduced later. The out-radius is therefore, the distance from p to its farthest corner, while the
in-radius is the distance from p to its nearest facet. A set of points is τ-well-spaced if every
Voronoi cell has aspect ratio at most τ .

The Voronoi diagram is the dual of the Delaunay triangulation, which has a simplex for every
subset of points on the boundary of a ball that contains no other points of P . For full-dimensional
Delaunay simplices, these circumscribing balls are called D-balls. The corners of the Voronoi cells
correspond to D-balls3.

Voronoi Refinement. The goal of Voronoi refinement is to produce a τ -well-spaced set M by
adding new vertices called Steiner points to an input set P that is not well-spaced. We want to
add as few vertices as possible. The algorithm is simple: starting with VorP , iteratively add the
farthest corner of any cell with aspect ratio greater than τ . It is perhaps more commonly known in
its dual formulation, as Delaunay refinement, where the goal is to improve the Delaunay simplices
rather than the Voronoi cells. But the resulting algorithms and their analysis are nearly identical
for both the primal and the dual formulation.

It is not immediately obvious that Voronoi refinement should ever terminate. Indeed, for some
τ , it will run forever. For a reasonable choice of τ , say τ = 3 for example, not only will the
algorithm terminate, it will do so with asymptotically optimal size, both in the number of points
added and the total number of faces in the diagram. This latter property results from the aspect
ratio condition, and is a major motivation for doing the refinement in the first place.

Sparse Voronoi Refinement. The first obstacle to producing a refined Voronoi diagram in
optimal time and space is that the input may have a large Voronoi diagram, Ω(n⌈d/2⌉) faces in the
worst case. To overcome this obstacle, the Sparse Voronoi Refinement (SVR) algorithm of Hudson
et al. [HMP06] interleaves the addition of input points to the diagram with the addition of Steiner
points. In doing so, the algorithm requires two extra pieces. First, input points are only added
if they are “close” to the current Voronoi diagram. Second, the Steiner points may not be added
“too close” to uninserted input points. The former notion of closeness is what we call ε-medial,
the ratio of the distances to the nearest and second nearest points must be at most ε. The latter
notion of closeness causes the algorithm to yield by adding an input point p rather than a Steiner
point v if the distance from p to v is less than γ times the radius of the empty ball around v.

By only inserting ε-medial points and yielding when appropriate, Sparse Voronoi refinement
maintains a good aspect ratio Voronoi diagram at every stage of the algorithm. Consequently, the
total work is output sensitive. This approach has also been generalized to more complex inputs
than just point sets, considering also piecewise linear complexes [HMP06].

Point Location, Point Location, Point Location. The bottleneck for the running time of
Voronoi refinement is point location. Recall, that in the standard incremental Voronoi (or Delaunay)
algorithm, the first step to inserting a new point is to find that point in the current diagram. A

3We permit corners on the boundary to represent “degenerate” D-balls, ones corresponding to simplices that are
not full-dimensional.

3

natural and highly effective technique for doing this point location is to eagerly store the uninserted
points in the D-balls of each Voronoi diagram as the algorithm progresses. Points are moved
whenever an insertion changes a D-ball locally.

In SVR, this approach corresponds to a geometric divide and conquer, similar in spirit to
quadtree methods, because after a constant number of moves, the size (radius) of the balls contain-
ing any point goes down by a constant factor. Thus, in SVR a single input point may be moved
Θ(log∆) times. In this work, we show how to modify the algorithm so that only O(log n) moves
are necessary. One way to view these results is as a way to achieve similar properties to compressed
quadtrees without leaving the comparison model or privileging any fixed set of coordinate axes.

4 Definitions and Notations

Points, Vectors, and Distances. We will treat points of d-dimensional Euclidean space as
vectors in R

d. As such, we denote the euclidean distance between two points x, y ∈ R
d as |x − y|.

Moreover, we allow the usual operations of scalar multiplication and addition on points and also on
sets of points. So, for example, if S is the unit sphere centered at the origin, c is any point, and r is
a non-negative real number, then rS+ c is the sphere of radius r centered at c. We will also define
the distance from a point x to a set S as d(x, S) = infy∈S |x− y|. We write ball(c, r) to denote the
open ball of radius r centered at c and conv(X) to denote the convex closure of X ⊂ R

d.

Domains. A domain Ω ⊂ R
d is defined by a center cΩ, a radius rΩ, and a collection of disjoint

open balls B1, . . . , Bk ⊂ BΩ = ball(cΩ, rΩ) such that

Ω = BΩ \

(

k
⋃

i=1

Bi

)

.

The ball BΩ is called the bounding ball of Ω and SΩ = {x ∈ R
d : |x− cΩ| = rΩ} is the bounding

sphere of Ω.

Figure 1: A domain hierarchy as a collection of sets (left) and its tree structure (right).

We get a hierarchy of domains if the balls removed from BΩ are the bounding balls of other
domains. Formally, a domain hierarchy is a tree H with disjoint domains as nodes rooted at
Ωroot such that

1. for any pair Ω,Ω′ ∈ H, p(Ω′) = Ω if and only if SΩ′ ⊂ Ω, and

2.
⋃

Ω∈H

Ω = BΩroot
.

Here, p(Ω) denotes the parent of Ω in H.

4

Cages. Given a domain Ω, we want to add vertices near SΩ to limit the interaction between the
inside and the outside of Ω. We will have two parameters, δ determining the density of these points,
and γ determining how nearly cospherical they are. We call such a set CΩ of vertices a cage and
we require the following three properties, where r = (1− δ − γ)rΩ and S = (1− δ − γ)SΩ.

1. [Nearness Property] For all v ∈ CΩ, d(v, S) ≤ γr.
2. [Covering Property] For all x ∈ S, d(x,CΩ) ≤ (δ + γ)r.
3. [Packing Property] For all distinct u, v ∈ CΩ, |u− v| ≥ (δ − 2γ)r.

To construct such a set of points, we start with a cage template T of points on the unit
sphere S. The points of T are a metric space δ-net on S (not to be confused with the range space
nets used elsewhere in this paper). That is, for all x ∈ S, d(x, T) ≤ δ and for each distinct pair
u, v ∈ T , |u − v| ≥ δ. Such sets are known to exist and can be constructed using a simple greedy
algorithm [Gon85, Mat02].

For a domain Ω we construct its cage by adding for each x ∈ cΩ + rT , a new point x′ such that
|x− x′| ≤ γr. It is easy to check that this set of points will satisfy the three properties of a cage.

Definition 2. A cage CΩ centered at c with radius r is ε-encroached or simply encroached by
a point p /∈ CΩ if either

1. p is an input point in annulus(c, εr, r), (inner-encroachment), or
2. p is an input or Steiner point in annulus(c, r, 2rε), (outer-encroachment).

Roughly speaking, non-encroached cages have room on the inside (w.r.t. input points) and room on
the outside (w.r.t. all mesh vertices).

Hierarchical Meshes. A mesh is a set of points M and its Voronoi diagram. The points of M
are called the vertices of the mesh.

Definition 3. A hierarchical mesh is a mesh M along with a domain hierarchy HM such that:

1. M has a vertex at the center of every domain, i.e. cΩ ∈M for all Ω ∈ HM

2. No domain is ε-encroached.

Given a hierarchical mesh M and Ω ∈ HM , we define MΩ to be the points of M contained in
Ω plus the centers of the children of Ω in HM . Formally,

MΩ = (M ∩Ω) ∪
⋃

Ω′∈children(Ω)

{cΩ′}.

We call this the set M restricted to the domain Ω, and it is well defined for any domain Ω and
any set M that contains the centers of the children of Ω. In particular, for a subset P ⊂ M ,
PΩ = P ∩MΩ.

In a hierarchical mesh, we can also define the Voronoi cell of a cage CΩ as

VorM (CΩ) =
⋃

u∈M∩BΩ

VorM (u).

Definition 4. We say that a hierarchical mesh M is τ-quality if the following conditions are met:

1. For every non-cage vertex v ∈M , VorM (v) has aspect ratio at most τ .
2. For every Ω ∈ HM , VorM (CΩ) has aspect ratio at most τ .

5

Figure 2: Quality cells of a vertex (left) and a cage (right).

3. No domain in HM is ε-encroached.

The four constants γ, δ, ε, and τ are called the meshing parameters. Throughout, they are
assumed to be fixed constants independent of the dimension.

Definition 5. For a set S and a domain Ω, the feature size is a function fΩS : Rd → R that maps
a point x to the distance to its second nearest neighbor among the points of SΩ.

We are mainly interested in the feature size of the input and of the mesh, fΩP and fΩM respectively,
over the domains of MH .

5 Additively-Weighted Voronoi Diagrams

There is a natural generalization of Voronoi diagrams in which the points are permitted to have
weights that affect the distance additively. For a point v, let rv be the weight of v. The distance
between two weighted points is defined as

d(u, v) = |u− v| − ru − rv.

An equivalent formulation simply measures the distance between the spheres of radius ru and rv
centered at u and v respectively. For a point set M , we define the additively-weighted Voronoi
cell of a point v ∈M to be

Vor(v) = {x ∈ R
d : min

u∈M
d(u, x) = d(v, x)}.

The additively-weighted Voronoi diagram is the cell complex decomposing R
d obtained by

taking all of the additively-weighted Voronoi cells. This definition generalizes the standard Voronoi
diagram, which may be viewed as an additively-weighted Voronoi diagram for points of 0 weight.

The additively-weighted Voronoi diagram is different from the more common notion of weighted
Voronoi diagrams obtained by replacing the distance function with the power distance. The cells
of the additively-weighted diagram are not necessarily polyhedra nor are they necessarily convex.
Still, it is possible to extend basic properties of Voronoi diagrams to the case of additive weights.
The in-radius of a Voronoi cell Vor(v) is defined as

in-radius(Vor(v)) := max{r : ball(v, r) ⊂ Vor(v)},

and similarly, the out-radius is defined as

out-radius(Vor(v)) := min{r : Vor(v) ⊂ ball(v, r)}.

6

We say that u and v are neighbors if Vor(u) ∩ Vor(v) 6= ∅. The in-radius of Vor(v) may also be
defined as 1

2d(u, v) + rv, where u is the nearest among the neighbors of v in additive distance. The
aspect ratio of Vor(v) is the ratio of the out-radius to the in-radius.

Approximation by Cages. The additively-weighted Voronoi diagram can be approximated
by a regular Voronoi diagram by replacing the weighted points with a small cage of new vertices
at distance rv from each weighted point v. The approximate cells are the union of the Voronoi
cells of the cage vertices. These approximate cells can also be used to get a good approximation of
the in-radius and out-radius of the weighted Voronoi cell. Let v be a vertex with cage vertices C.
The neighbors of C are those vertices v that share a Voronoi face with a vertex in C but are not
in C ∪ {v}. The in-radius of the approximate Voronoi cell is 1

2d(u, v) + rv, where u is the nearest
among the neighbors of C in additive distance. Since the neighbors necessarily have weight 0, this
reduces to |v−u|+rv

2 .
For unweighted points M , the feature size function fM : Rd → R is the distance to the second

nearest point of M . So, for points v in M , fM (v) is the distance to the nearest neighbor of v in
M \ {v}. Thus, in the absence of weights, the in-radius of Vor(v) is 1

2 fM (v) and if the aspect ratio
is τ and the out-radius is R then fM (v) = 2R

τ . If the points have weights then the definition of
fM is the same as if the points have no weights. The following lemma shows how this feature size
relates to the out-radius and aspect ratio of the weighted Voronoi cells.

Lemma 1. Let v be a weighted point among a set M . Let r be the in-radius of Vor(v). If ra ≤
ε(|a− b| − rb) for all a, b ∈M , then

2r(1− ε)

1 + ε
≤ fM (v) ≤

2r

1− ε

Proof. Let u and w be the nearest points to v in Euclidean and weighted distance respectively (it
could be that u = w). So, 2r = |v − w|+ rv − rw and fM (v) = |u − v|. By assumption, rv and rw
are both less than ε|v − w|. So, it follows that

(1− ε)|v − w| ≤ |v − w|+ rv − rw ≤ (1 + ε)|v − w|. (1)

This assumption and the definitions of u and w also imply that

(1− ε)|v − w| ≤ |u− v| ≤ |v − w|. (2)

So, the result follows from (1) and (2).

When we choose sufficiently dense cages, nearly the same bounds apply for the approximate
weighted Voronoi cells:

Lemma 2. Let v be a vertex or a cage in a hierarchical mesh M . Let r be the in-radius of Vor(v)
and let c be the center of v. If no cages are ε-encroached for ε sufficiently small, then

r ≤ fΩM (c) ≤ 3r,

where Ω is the domain containing the boundary of Vor(v).

6 The Algorithm

6.1 Overview of the Algorithm

Like Sparse Voronoi Refinement, the core of the NetMesh algorithm is an incremental construction
of a Voronoi diagram with the refinement steps to maintain mesh quality. There are five main

7

concerns. The algorithm must (1) order the input points. These points are added one at a
time in an (2) incremental construction. After each insertion, Steiner points are added in a
(3) refinement phase that recovers the quality invariant. All the while, uninserted points are
organized in a (4) point location data structure. Once all of the inputs have been added, an
optional (5) finishing procedure turns the linear-size hierarchical mesh into a standard well-spaced
mesh. Each of these concerns will be addressed in more detail below, but first we will describe the
main ideas used and how they fit together.

Point Location. The point location data structure associates each point with each D-ball that
contains it. So, it is easy to report the set of D-balls containing an input point and similarly, to
report the set of points in a D-ball. These associations are updated locally every time a new point
changes the underlying Delaunay triangulation. We will prove that no point is ever in more than
a constant number of D-balls and thus the size of this structure will not exceed O(n).

Incremental updates. In Sparse Voronoi Refinement, every insertion is medial. This is
critical to maintain quality in the mesh throughout the algorithm. In the NetMesh algorithm, we
change the domain hierarchy before inserting each point to guarantee that it is medial in whatever
domain contains it. We show that this is sufficient to get the same guarantees as in SVR. Thus,
we can insert the points in any order.

Ordering the input with ǫ-nets. The theory of range space ǫ-nets is used to choose the
input insertion order. One round of the algorithm consists of the union of a collection of ǫ-nets for
the input points for each D-ball, where the ranges are open balls. It is known that such sets exist,
are small, and can be found quickly and deterministically [Cha00]. The points in any round may
be inserted in any order, after which, the next round is computed. In each round, the maximum
number of points stored in any D-ball goes down by a constant factor, so the total number of rounds
is O(log n).

Refinement. The refinement, or cleaning phase of the algorithm is a standard Voronoi refine-
ment in that it adds Steiner points at the farthest corner of any cell with bad aspect ratio. As
in SVR, if the Steiner point is sufficiently close to an uninserted input point p, then p is added
instead. One slight change is that we maintain the aspect ratio of the Voronoi cells of cages, but
do not require the cage vertices themselves to have good aspect ratio Voronoi cells.

Finishing the mesh. The algorithm produces a quality hierarchical mesh of linear size. If
one wants to extend this mesh to a standard well-spaced mesh, it is a straightforward procedure to
do this in O(m) time, where m is the number of vertices in an optimal-size, well-spaced superset
of P . This finishing process can run quickly because it need not do any point location (all of the
input points have already been inserted).

6.2 Point Location Operations

Each uninserted input point stores a list of D-balls that contain it as well as a list of cages that
it encroaches. Similarly, the D-balls have lists of uninserted vertices that they contain. With each
change in the Voronoi diagram, these lists are updated. We say that the points are “stored in the
balls” to simplify the description of this list upkeep. A point will generally be contained in several
D-balls. The uninserted points are moved out of D-balls that have been destroyed and into newly
created D-balls. This shuffling of points between D-balls is the work of point location. A point is
touched in this process if it is moved into a new ball or even if it is considered for moving into a
new ball. We count the point location work from the perspective of the uninserted input points.

There are four main point location operations needed.

1. Find the D-balls containing a point to insert it into the Voronoi diagram.

8

2. Find the nearest and second nearest neighbor of a point in its domain in order to compute
its mediality.

3. Find any cages encroached by a given point.
4. Find a nearby input point to yield to, when inserting a Steiner point.

The first operation is trivial.
For cage vertices v in a domain Ω, let center(v) be the vertex at the center of Ω. Let B(x) be the

set of D-balls containing x. Let V (B) be the d+1 vertices of the Delaunay simplex corresponding
to the D-ball B. Let U(x) = {V (B) : B ∈ B(x)}. If Ω is the domain containing x, then the nearest
and second nearest neighbors of x in MΩ are in U(x) or {center(v) : v ∈ U(x)}, so it is easy to

identify them. Call these vertices nx and sx respectively. Thus, Mediality(x) = |x−nx|
|x−sx|

can be

computed in time O(|B(x)|).
To check encroachment of input points is easy because this information is stored with the points.

At the time a cage is created, any encroaching input points must be relocated, so the encroachment
is discovered at that time. To check encroachment of Steiner points, it suffices to observe that if
a Steiner point x encroaches a cage C, then some vertex of c must appear in U(x). So, there are
only O(|U(x)|) cages to check and each check takes constant time.

To find a point to yield to, we simply need to check for input points in a small empty ball
around the proposed input point. This is trivial for Steiner points added during refinement because
the Steiner point is the center of a D-ball B and thus we only need to check Uninserted(B). For
cage vertices v, the search requires us also to check the points in {Uninserted(B) : B ∈ B(v)}.
In both cases, the points checked in this process also need to be checked for relocation when the
new vertex is inserted. Thus, the cost for this search is dominated by the cost of relocating points,
which we analyze in detail later.

6.3 Incremental Updates to Hierarchical Meshes

The basic operation in incremental Voronoi diagrams is Insert(v), which adds the vertex v to the
Voronoi diagram and updates the point location data structures. To keep this operation constant
time (not counting the cost of point location), we must guarantee that |B(v)| is a constant because
every D-ball in B(v) is destroyed by the insertion. This is done by making sure that every new
insertion is medial. Before the new point is inserted, we update the domain hierarchy. If the point
was not medial, then it must be significantly closer to its nearest neighbor than it second nearest
neighbor, and thus we add or expand cage around the nearest neighbor. We must also update the
domain hierarchy of the new point encroaches on an existing cage.

Insert(x)
for each C in OutEncroach(x): ReleaseCage(C)
Add x to VorM and update the point location structure.

YieldingInsert(x)
let v be the nearest neighbor of x in the current mesh.
if there is an input point p in ball(x, γ|x− v|)

then Insert(p) else Insert(x)

There are three basic cage operations:

9

NewCage(p, r)
Initialize a new cage.
for each x ∈ T , YieldingInsert(rx+ p).

ReleaseCage(C)
for each cage vertex v in C push v to the RefineList.
Delete the cage C

GrowCage(C)
Let x be the center of C and let r be its radius.
if in-radius(Vor(C)) ≥ r

ε2
then NewCage(x, rε).

ReleaseCage(C).

Equipped with the cage operations, we define the following routine. Its purpose is to rearrange
the domain hierarchy by creating or growing new cages so that a new vertex v can be added to a
domain in which it is medial.

InsertInput(v)
let u be the nearest neighbor of v in MΩ

if Mediality(v) ≤ ε then NewCage(u, |u − p|/ε)
for each C in InEncroach(v): GrowCage(C)
Insert(v)

6.4 Refinement

The algorithm maintains a list of cells with bad aspect ratio called RefineList. The cleaning
procedure goes through this list and refines these cells until none are left. The RefineList is
updated every time a Voronoi cell changes. The structure of the Voronoi diagram makes it easy to
check the aspect ratio of a cell and Theorem 4 implies that this can be done in constant time. If
a cell’s aspect ratio was good but goes bad, it is added to the list. If its aspect ratio was bad but
becomes good, it is removed from the list.

Clean(M : Mesh)
while RefineList is not empty

let v ∈ RefineList

let x be the far corner of Vor(v)
YieldingInsert(x)

6.5 Input Ordering with ǫ-Nets

We employ the theory of range space ǫ-nets to order the inputs for insertion. The following is a
special case of Theorem 4.6 from [Cha00] when the range space is defined by open balls.

Theorem 3. Let P ⊂ R
d be a set of n points and let ǫ ∈ (0, 1). There exists an algorithm Net(ǫ, P)

that runs in O(1
ǫ2
(log 1

ǫ)
d+1n) time and returns a subset N ⊆ P such that |N | = O(1ǫ log

1
ǫ) and

any open ball that contains ǫn points of P also contains a point of N . In particular, for constant ǫ
the running time is linear and the net is of constant size.

10

Using the Net algorithm as a black box, we select the next round of points to insert as follows.

SelectRound(M : mesh)
N ← ∅
for each B ∈ DBalls(M)

N ← N ∪Net(1
2d ,Uninserted(B))

return N

If the maximum number of uninserted points in a D-ball of some mesh is k, then after adding
the points chosen by SelectRound, this maximum is at most k

2 . This follows from the fact that
every new D-ball is covered by at most d of the old D-balls (see Theorem 10). So, the total number
of rounds is at most ⌈log n⌉. We can now give the main loop of the algorithm.

NetMesh(P : points)
Initialize an empty mesh M
Uninserted← P
let c, r be such that P ∈ ball(c, r)
OuterCage = NewCage(c, rε)
while Uninserted is not empty

V = SelectRound(M)
for each v ∈ V

InsertInput(v)
Clean(M)

return M

6.6 Finishing the Mesh

The output of NetMesh is a quality hierarchical mesh. If the desired output is a well-spaced
mesh according to the traditional definition, i.e. quality with a single domain, then some finishing
procedure is required. Fortunately, it is trivial given the cage operations defined above:

FinishMesh(M : Mesh)
while there exists a cage C other than OuterCage

GrowCage(C)
Clean(M)

Since the cages are not encroached, they have some space around them. The FinishMesh procedure
simply grows the cages until this space is filled. No new cages are formed and no point location
work on input points is required.

Note that finishing the hierarchical mesh in this way may result in a mesh with more than a
linear number of points because well-spaced meshes are subject to potentially superlinear (or even
superpolynomial!) lowerbounds. This is why we consider the finishing operation to be optional.

7 Overview of the Analysis

An intermediate mesh, Mi, is the mesh after i vertices or cages have been inserted in during the
incremental construction. To analyze theNetMesh algorithm, we will prove that two invariants are

11

maintained for each intermediate mesh: the feature size invariant and the quality invariant.

Definition 6. A hierarchical mesh M satisfies the quality invariant if each intermediate mesh
Mi is τ ′-quality for some constant τ ′ depending only on the meshing parameters.

Definition 7. A hierarchical mesh M of an input set P satisfies the feature size invariant if
for all domains Ω ∈ HM and all vertices v ∈MΩ

fΩP (v) ≤ KfΩ
M(v),

where K is a constant that depend only on the mesh parameters.

The quality invariant is useful because of several properties of quality meshes.

Theorem 4. If M is a τ -quality mesh, then

1. no point of Rd is contained in more than O(1) D-balls,
2. no D-ball intersects more than O(1) other D-balls, and
3. no vertex of M has more than O(1) Delaunay neighbors.

These structural results about quality meshes are known for the case of a single domain [MTTW99,
HMP06]. To extend them to the case of a quality hierarchical meshes follows the same methods as
in previous work. The three conclusions are proven in Theorems 16, 19, and 17 respectively.

Over a single domain, standard results in mesh size analysis imply that the feature size invariant
suffices to prove that the number of vertices is bounded (up to constants) by the feature size integral:

∫

Ω

dx

fΩP (x)
d
.

In previous work [MPS08], we showed that the feature size integral is O(n) when the input points
satisfy a certain spacing condition. We prove that in each domain Ω of the hierarchy, the points
of PΩ satisfy this spacing condition (Lemma 8), allowing us to prove that the total output size is
O(n) (Theorem 9).

Theorem 4 and the quality invariant imply that the cost to update the Voronoi diagram for a
single insertion is constant. That is, the number of combinatorial changes to the Voronoi diagram
is constant for each each insertion. Thus, since the total number of points added is O(n), the total
work is O(n), not counting the cost of point location.

To bound the cost of point location, we first show that at most a constant number of vertices
are added to any D-ball in the course of a round (Lemma 31). This is then used to show that the
total amount of point location work is O(n) per round. Since there are only O(log n) rounds, the
total work is O(n log n) as desired.

Finally, in Section 13, we show that the FinishMeshprocedure runs in O(m) time. This allows
us to conclude the following theorem about the overall running time.

Theorem 5. Given n points P ⊂ R
d, the NetMesh algorithm produces a hierarchical quality

mesh of size O(n) in O(n log n) time. If this is followed by the FinishMesh procedure, the output
is a well-spaced mesh of size O(m) in O(n log n+m) time.

12

8 Size Bounds

In this section we will show that the output of NetMesh has linear size. The analysis will follow
a straightforward strategy. We will argue that the algorithm never inserts a vertex too close to an
existing vertex. This is known as the insertion radius invariant, and it allows us to prove that
the feature size invariant holds for all intermediate meshes. We use this to prove that for all
domains Ω, MΩ has size linear in |PΩ| from which the overall bound follows. This strategy is not
new; it parallels closely the approach of Ruppert [Rup95] for Delaunay refinement and its sparse
version introduced by Hudson, Miller, and Phillips [HMP06]. We have adapted it to the case of
hierarchical meshes.

We say that a hierarchical mesh M is constructed incrementally if the vertices are added one
at a time and the domains are adjusted before every insertion so that no domain is encroached. In
particular, the algorithm given is such an incremental construction. The intermediate mesh after i
points and cages have been added is denoted by Mi, its domain hierarchy HMi

is denoted Hi, and
Pi = P ∩Mi is the set of inputs inserted thus far. Define the insertion radius of the ith vertex
added v as λv = fΩMi

(v), where Ω ∈ Hi is the domain into which v was inserted.

Definition 8. A hierarchical mesh M of an input set P constructed incrementally satisfies the
insertion radius invariant if for all domains Ω ∈ Hi for all i and all vertices v ∈MiΩ

fΩPi
(v) ≤







K ′
Cλv if v is inserted as a cage vertex,

K ′
Sλv if v is inserted as a circumcenter, and

K ′
Iλv if v is inserted as an input vertex

where K ′
C ,K

′
S, and K ′

I are constants that depend only on the mesh parameters.

The following lemma states that as long as the insertion radius of every vertex is not too small
then the distance to its nearest neighbor is also not too small. Its proof is straightforward and
reserved for the appendix.

Lemma 6. If M is a hierarchical mesh constructed incrementally that satisfies the insertion radius
invariant, then M also satisfies the feature size invariant.

Lemma 6 implies that in order to prove that the spacing of the points in the final mesh is good,
it will suffice to show that the algorithm maintains the insertion radius invariant throughout. This
is proven in the following lemma.

Lemma 7. The hierarchical mesh M constructed by the NetMesh algorithm satisfies the insertion
radius invariant.

Proof. We proceed by induction on the total number of vertices added. Let v be the ith vertex
added and let Ω be the domain it is inserted into.
Case 1: v is a cage vertex. Since PΩ contains at least the center of Ω, the feature size is
bounded as fΩP (v) ≤ rΩ. By construction, adjacent cage vertices are at least αrΩ apart, where
α = (δ − 2γ)(1 − δ − γ). So, λv ≥ αrΩ. Combining these two facts and choosing K ′

C ≥
1+ε
α yields

fΩPi
(v) ≤ K ′

Cλv as desired.
Case 2: v is a clean move. Steiner points are added when some vertex (or cage) u ∈ Mi−1Ω

has aspect ratio greater than τ . Let Vu denote this poor aspect ratio cell. Let w be the nearest
neighbor of u in MΩ, so fΩM (u) = |u−w|. In case we yielded in order to insert v, let v′ be the true
circumcenter that we tried to insert. The yielding condition guarantees that

|v − v′| ≤ γ|u− v′|. (3)

13

Since u or w or both can be the center of a child domain of Ω, we need to also consider vertices
u′, w′ of M that define the insertion radius of v and the in-radius of Vu respectively. Since w does
not encroach a domain at u and |u− w| ≤ |u− v′|, it follows that

|u− u′| ≤ ε|u− v′|. (4)

The D-ball centered at v′ has radius |u′ − v′| and is empty of vertices, so λv ≥ |u
′ − v′| − |v − v′|.

Using the triangle inequality, (3), and (4), we can bound the insertion radius as follows.

|u− v′| ≤ βλv. (5)

where, β = 1
1−ε−γ . Since w is closer to u than v, fΩMi−1

(u) = fΩMi
(u) and fΩPi−1

(u) = fΩPi
(u). So, we

can use induction and Lemma 6 to get that

fΩPi
(u) ≤ K ′

I |u− w|. (6)

We use K ′
I because it is the largest of the K ′ constants.

We may now derive a bound on fΩPi
(v) as follows.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ fΩPi
(u) + |u− v′|+ |v′ − v| [triangle inequality]

≤ fΩPi
(u) + (1 + γ)|u− v′| [by (3)]

≤ K ′
I |u−w|+ (1 + γ)|u− v′| [by (6)]

≤

(

3K ′
I

τ
+ 1 + γ

)

|u− v′| [Vu aspect ratio > τ]

≤

(

3K ′
I

τ
+ 1 + γ

)

βλv [by (5)]

So, setting K ′
S ≥

(

3K ′
I

τ + 1 + γ
)

β yields the desired bound.

Case 3: v is an input. Choose u such that λv = |u − v| and let j and Ωj be the time that u
was inserted and the domain it was inserted into respectively. If u ∈ CΩ, then v encroaches on Ω,
which is impossible. If u is an input vertex then λv = fΩ

P (v) so we are done. So, we may assume
that u is a Steiner point, inserted either as either a circumcenter or as a cage vertex that was later
released.

We define K ′
u = K ′

S in the former case and K ′
u = K ′

C in the latter. By choosing K ′
I ≥

K ′
u

γ + 1,
we can now derive the following bound.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ f
Ωj

Pj
(u) + |u− v| [by Lemma 44]

≤ K ′
uλu + |u− v| [by induction]

≤

(

K ′
u

γ
+ 1

)

|u− v| [because u did not yield to v]

≤ K ′
I |u− v|

[

K ′
u

γ
+ 1 ≤ K

]

= K ′
Iλv. [λv = |u− v|]

14

Lemma 8. Let q and q′ be any two input points and let r be the distance between them. If
A = annulus(q, 2r, 6r

ε3
) contains no input points, then q and q′ are inside some cage contained in A

for all intermediate meshes after each has been inserted.

Sketch. Let p1, . . . , pk be all input points in ball(p, 2r) ordered by the order in which they were
inserted. Clearly q and q′ are among the pi’s. The proof is a straightforward induction on k,
requiring us only to show that each insertion leaves the desired cage around the previous set. The
constant 6

ε3 was carefully chosen to make this work. The full proof is Lemma 47 in the appendix.

We can now prove that the output mesh has size linear in the input size.

Theorem 9. If M is the output of the NetMesh algorithm for an input set P , then |M | = O(|P |).

Sketch. Let Ω be any domain in the output. Let p1 . . . , pj be the vertices of PΩ ordered such that
for each i = 3 . . . j, fPΩ

i
(pi)/fPΩ

i−1

(pi) ≥
12
ε3

+ 1, where Pi = {p1, . . . , pi}. Lemma 8 guarantees

that such an ordering can be found by a trivial greedy algorithm (see Lemma 46 for details of the
construction).

In previous work [MPS08], we showed if PΩ can be ordered this way then any well-spaced
superset satisfying the bound in Lemma 7 has size O(|PΩ|). So, in particular |MΩ| = O(|PΩ|).
Now, we observe that because every domain contains at least 2 input points,

∑

Ω |PΩ| < 2|P |. So,
the total mesh size can be bounded as |M | ≤

∑

Ω |MΩ| = O(
∑

Ω |PΩ|) = O(|P |).

9 Range Spaces and ǫ-Nets

In this section we discuss ideas and definitions from hypergraph and range space theory that we
will need in our meshing algorithm. We will also give a distance measure derived from a range
space that is useful for our analysis. A range space or hypergraph is a pair (X,R) where X is
a set and R is a collection of sets called ranges. A range space ǫ-net for (X,R) is a subset N
of X such that N ∩R 6= ∅ for all R ∈ R such that |R ∩X| ≥ ǫ|X|.

Throughout this discussion the ranges will be open balls in R
d including those with infinite

radius, i.e. halfspaces. For a subset M ⊂ R
d, define:

BM = {B : B is a ball and B ∩M = ∅}.

A useful subset of BM is the set of D-balls of M :

DM = {B ∈ BM : B is a D-ball of M}.

The following geometric lemma is useful for translating between statements about D-balls and
statements about arbitrary empty balls in the space.

Theorem 10. If M ⊂ R
d and B ∈ BM then B is covered by at most d D-balls of DM and these d

balls all share a common point.

The proof is in Appendix A.
Let GBM

be the graph with vertex set BM and edges for each pair of balls that intersect. For any
x, y ∈ Rd \M , let dBM

(x, y) be the length of the shortest path in GBM
between a ball containing x

to a ball containing y. Define GDM
and dDM

similarly. These distances are related by the following
lemma.

15

Lemma 11. If M ⊂ R
d is finite then dDM

≤ 2dBM

Proof. Let x, y ∈ R
d be any pair of points and let s = dBM

(x, y). It will suffice to find D-balls
E1, . . . , E2s ∈ DM such that x ∈ E1, y ∈ E2s, and each Ei ∩Ei+1 is nonempty. By the definition of
dBM

, there exists balls B1, . . . , Bs ∈ BM such that x ∈ B1, y ∈ Bs, and each Bi∩Bi+1 is nonempty.
Let zi be a point in Bi∩Bi+1 for i = 1 . . . s−1 and define z0 := x and zs := y. Now, by Theorem 10,
there are d D-balls covering each Bi and they all have a common intersection. So, letting E2i−1

and E2i be the D-balls among these that contain zi−1 and zi gives the desired path of length at
most 2s in GDM

.

10 Bounding the ply

In this section, we prove that the D-balls have constant ply, a fact that is useful for many parts
of the analysis. In particular this is important for showing that the cost of a single insertion is
constant. The constant ply can then be used to show that the degree of the intersection graph of
the D-balls is bounded by a constant, and moreover, that the degree of every vertex of the Delaunay
1-skeleton is bounded by a constant. The latter bound implies that the total complexity of the
Delaunay triangulation is linear in the number of vertices.

These results are known in the case of Voronoi diagrams with bounded aspect ratio [MTTW99],
but we extend them to hold when there is a domain hierarchy rather than a single domain. To
begin, we give some lemmas about the limited interaction between the different domains in the
hierarchy.

Lemma 12. Let (M,H) be a hierarchical mesh with cages. For any domain Ω, every D-ball B that
intersects B′

Ω = ball(cΩ, (1− 2δ − 2γ)rΩ) is contained in BΩ.

Proof. Suppose for contradiction that there exists a D-ball B = ball(c, r) such that both B ∩ B′
Ω

and B \BΩ are nonempty. Let z be the projection of c onto the sphere {x : |x− c| = (1− δ−γ)rΩ}.
By the cage spacing properties, there is some vertex u in CΩ such that |u − z| < (δ + γ)rΩ.
Next, |c − z| ≤ r − (δ − γ)rΩ by our supposition and the triangle inequality. So, it follows that
|c− u| ≤ |u− z|+ |z− c| < r. However, this implies that u ∈ B, contradicting the assumption that
B is a D-ball.

Lemma 13. Let M be a τ -quality hierarchical mesh with parameters such that ε+ε2 < 1−2δ−2γ.
If Ω1, Ω2, Ω3 are three nested domains in HM , i.e. Ω1 = p(Ω2) and Ω2 = p(Ω3) then no D-ball
intersects both Ω1 and Ω3.

Proof. Suppose for contradiction that some ball B intersects both Ω1 and Ω3. Let c2 and c3 be the
centers of Ω2 and Ω3 respectively. Since c2 does not encroach the outside of Ω3 and c3 does not
encroach the inside of Ω3 we have that

1

ε
rΩ3
≤ |c2 − c3| ≤ εrΩ2

. (7)

Let x be a point of B ∩ Ω3. By (7) and the triangle inequality, |x − c2| ≤ (ε + ε2)rΩ2
. Since

ε+ ε2 < 1 − 2δ − 2γ, Lemma 12 implies that B is contained in BΩ2
and therefore is disjoint from

Ω1, a contradiction.

Lemma 14. Let M be a τ -quality hierarchical mesh and let Ω be any domain in HM . If B is a
ball of radius r centered in BΩ empty of points in M and x ∈ B, then

fΩM (x) ≥ c14r,

16

where c14 =
1

24τ2

Proof. The proof of Lemma 6.1 from [HMP06] may be repeated verbatim here even though the
Voronoi cells are defined differently because the proof only uses the the in-radius and out-radius
conditions which are well-defined.

Lemma 15. Let M be a τ -quality mesh with ε < 1
3 . Let B = ball(c, r) be a D-ball corresponding

to a simplex σ ⊂ M and let x be a point of B. If Ω is a domain such that the ancestor of some
vertex of σ in MΩ is not the nearest neighbor of x in MΩ, then

fΩM (x) ≤ 3r.

Proof. Let u′ be the ancestor of u in MΩ assumed to exist, and thus fΩ
M (x) ≤ |x − u′|. Since no

domains are ε-encroached, |u′−u| ≤ ε|u′− v|, and thus, by the triangle inequality |u′−u| ≤ ε|u−v|
1−ε .

Since u and v are on the boundary of B, |u − v| ≤ 2r and so, using the assumption that ε < 1
3 ,

|u − u′| ≤ r. Because x ∈ B, |x − u| ≤ 2r. Using the triangle inequality and the preceding
inequalities, we get fΩ

M (x) ≤ |x− u|+ |u− u′| ≤ 3r.

Theorem 16. A τ -quality hierarchical mesh has ply at most c16 where c16 depends only on the
meshing parameters.

Proof. Let x be any point and let Ω be the domain containing x. Let S be the set of D-balls
containing x. For any σ ∈ Del(M), let Bσ be its D-ball and let Ωσ be the least common ancestor
domain of its vertices. Let nx be the nearest neighbor of x in MΩ and let Ω′ be the child domain
of Ω centered at nx (if it exists).

There are two corner cases that we need to eliminate first: these are balls Bσ in S such that

1. Ω′ = Ωσ, or
2. Ω = Ωσ and Bσ is not centered in Ω.

In both of these cases, Bσ spans the bounding sphere of either Ω or Ω′. So, Lemmas 12 and 18
imply that there are only a constant number of such balls. Let S′ be the subset of S formed by
removing this constant sized set of balls.

Consider the following two subsets of S′.

S1 = {Bσ ∈ S′ : Ω = Ωσ or Ω = p(Ωσ)}

S2 = {Bσ ∈ S′ : p(Ω) = Ωσ or p(Ω) = p(Ωσ)}

By Lemma 12, S1 and S2 cover all of S′. Thus it will suffice to prove these sets have constant size.
Ignoring the overlap, these two cases correspond to counting the balls that contain x that come
from its own domain or children and those that come from a parent or sibling domain. In fact, the
two cases are completely symmetric. The rest of the proof will show that |S1| is a constant. It can
then be repeated for the second case by inserting S2 and p(Ω) in place of S1 and Ω.

The set of vertices on simplices whose D-balls are in S1 is V = {v ∈ σ : Bσ ∈ S1}. Let v
′ denote

the ancestor in MΩ of any vertex v ∈ V , and define V ′ = {v′ : v ∈ V }. We will first show that

|V | ≤ c18|V
′|. Then we will show that |V ′| ≤ α, where α =

(

24τ
c14

)d
. Every D-ball in S1 corresponds

to some subset of d+ 1 points of V so will conclude that |S1| ≤
(|V |
d+1

)

≤ (αc18)
d+1.

Claim: |V | ≤ c18|V
′|.

Fix some v ∈ V ′. Let U = {u ∈ V : u′ = v′} It will suffice to show that |U | ≤ c18. If v′ ∈ Ω, then
v = v′ and so |U | = 1. So, we may assume that v′ is the center of some domain Ωv′ whose parent is

17

Ω. Note that Bσ ∩ Ω is nonempty for all Bσ ∈ S1. So, any u ∈ U came from a ball Bσ that spans
the bounding sphere of Ωv′ . Thus, Lemmas 12 and 18 implies that |U | ≤ c18.

Claim: |V ′| ≤ α, where α =
(

24τ
c14

)d
.

Let rmin and rmax be the minimum and maximum radii among the balls of S1. By Lemma 14,
fΩM (x) ≥ c14rmax. Lemma 15 implies that fΩM(x) ≤ 3rmin. Combining these two facts, we see that
all of the balls have radii that differ by at most a constant:

rmax ≤
3rmin

c14
. (8)

Consider any ball Bσ ∈ S1 with a vertex v ∈ σ. The bounded aspect ratio condition implies
that

fΩ
M (v′) ≥

rmin

τ
. (9)

The vertices v′ ∈ V ′ are not too far from x compared to the radii of the balls:

|v′ − x| ≤ |v − v′|+ |v − x| [by the triangle inequality]

≤ |v − v′|+ 2rmax [v, x ∈ B ∈ S1]

≤ εfΩM (v′) + 2rmax [non-encroachment]

≤ 3rmax.

[

ε ≤
1

3
and Lemma 15

]

(10)

We can now show that |V ′| ≤ α by a volume packing argument. Specifically, let U =
{ball(v′, rmin

2τ) : v′ ∈ V ′}. Note that |U | = |V ′|. By (9), these balls are disjoint. By (10), these balls

are contained in a ball of radius 4rmax. Applying (8), we conclude that |U | ≤
(

24τ
c14

)d
.

Corollary 1. Every vertex v in a τ -quality hierarchical mesh M is in at most (d+1)c16 Delaunay
simplices.

Proof. Let U be a set of d+ 1 points in ball(c, r) such that v ∈ conv(U) and r is sufficiently small
so that every D-ball with v on its boundary intersects U . By Theorem 16, there are only c16 D-balls
intersecting any point in U , so the total number of Delaunay simplices containing v is at most
(d+ 1)c16.

Theorem 17. Let M be a τ -quality mesh and let GDel be the graph formed by the 1-skeleton of
Del(M). The maximum degree of any node of GDel is bounded by a constant that depends only on
the meshing parameters.

Proof. Let v ∈ M be any vertex. Note that every simplex containing v in Del(M) has a corre-
sponding D-ball with v on its boundary. Corollary 1 implies that there are only (d + 1)c16 such
D-balls. Each such ball contributes at most d edges, so the total is at most d(d+ 1)c16.

Lemma 18. Let (M,H) be a hierarchical mesh with no encroached cages. Let Ω ∈ H be a
domain such that fΩP (z) ≤ KfΩM (z) for all z ∈ Ω. The number of vertices of M contained in
A = annulus(cΩ, 2εrΩ, rΩ) is at most some constant c18 depending only on the meshing parameters.

Proof. For points z in A, we know that fΩP (z) ≥ εrΩ because CΩ is not encroached. It follows that
for all z ∈ M ∩ A, fΩM (z) ≥ ε

K rΩ. So, there must be disjoint balls of radius at least ε
2K rΩ around

each such z. Therefore, a simple packing completes the proof.

18

Theorem 19. Let M be a τ -quality mesh and let GD be the intersection graph of the D-balls of
Del(M). The maximum degree of any node of GD is bounded by a constant c19 that depends only
on the meshing parameters.

Proof. Let B = ball(c, r) be any D-ball and let Ω be the domain containing its center. Let S be
the set of D-balls intersecting B. We will show that |S| ≤ c19 by bounding separately the number
of such balls with radius at least βr and those with radius less than βr, where β is a constant
independent of the dimension.

Let S1 = {b ∈ S : radius(b) ≥ βr}. Observe that for any b ∈ S1, vol(b∩ ball(c, 1 + 2β)) ≥ βd
Vd.

Theorem 16 implies that ball(c, r + 2βr) is covered at most t times by the D-balls of S1 and thus
by volume packing,

|S1| ≤ t(2 +
1

β
)d.

We will now bound the size of S2 = {b ∈ S : radius(b) < βr}. Let B′ = ball(c′, r′) be a D-ball
of S2 and let V be the vertices of the Delaunay simplex corresponding to B′. Let h : DM → M
be a map that takes a D-ball B′ to an arbitrary vertex its corresponding Delaunay simplex. Let
g : S → MΩ be a map defined as g(B′) = lcaMΩ

(h(B′)). As a shorthand, we write g(S) to denote
⋃

B′∈S{g(B
′)}. The map g allows us to charge the balls of S to nearby vertices inMΩ. In Lemma 20,

we prove that
|g(S2)| ≤ c20.

Then, in Lemma 21, we prove that
|g−1(v)| ≤ c21,

for all v ∈MΩ. Together these allow us to conclude that

|S2| =
∑

v∈g(S2)

|g−1(v)| ≤ c20c21.

So, setting c19 = t(2 + 1
β)

d + c20c21, we conclude that

|S| = |S1|+ |S2| ≤ c19.

Lemma 20. If S2 is a collection of D-balls of radius at most βr intersecting a D-ball B = ball(c, r),
then |g(S2)| ≤ c20, where β =

c14
4 r and c20 is a constant that depends only the meshing parameters.

Proof. Fix some B′ ∈ S2 and let r′ be its radius. Let Ω be the domain containing c. Let u = h(B′)
and v = g(B′). If u, v ∈ Ω then u = v and |u − v| = 0. The cage construction guarantees
that if u, v /∈ Ω then |u − v| ≤ (1 − δ + γ)|c − v|. Using the triangle inequality, we know that
|c− v| ≤ r + 2r′ + |u− v|. Combining these inequalities, we get that

|c− v| ≤ αr, (11)

where α = 1+2β
δ−γ .

We want to prove that the vertices of g(S2) are not too close together. To do this, we will
bound the feature size at v ∈ g(S2). There are two cases to consider. First, if |u − v| > βr then
fΩM (v) ≥ βr because the cage centered at v that contains u cannot intersect any point of MΩ (other
than v itself). Second, if |u − v| ≤ βr then fΩM (v) ≥ fΩM (z) − |z − u| − |u − v|, where z ∈ B ∩ B′.

19

Since z ∈ B and B is centered in Ω, Lemma 14 implies that fΩM ≥ c14r = 4βr. Since z and u are in
B′, |z − u| ≤ 2r′ ≤ 2βr. So in this case as well, we conclude that

fΩM (v) ≥ βr. (12)

We can now complete the proof with a volume packing argument. For each v ∈ g(S2), we con-
sider the ball bv = ball(v, β2 r). Inequality (12) implies that these balls are disjoint. Moreover, (11)

implies that these balls are all contained in ball(c, (α+ β
2)r). It follows that the number of balls bv

can be at most c20 =
(

2α
β + 1

)d
.

Lemma 21. For all v ∈ MΩ, |g
−1(v)| ≤ c21, where c21 is a constant that depends only on the

meshing parameters.

Proof. Let U = {h(B′) : B′ ∈ g−1(v)}. Corollary 1 implies that |g−1(v)| ≤ (d+1)c16|U |. So, it will
suffice to prove that |U | ≤ c21

(d+1)c16
.

Fix B′ = ball(c′, r) ∈ g−1(v) and let u = h(B′). If u ∈ MΩ then u = v and |U | = 1. So, we
may assume that there is some domain Ω′′ ∈ children(Ω) centered at v. Let r′′ be the radius of Ω′′.
There are two cases to consider.
Case 1: u ∈ U1 = {u ∈ U : |u − v| ≤ 2εr′′}. Lemma 12 implies that B′ ⊂ BΩ′′ . Lemma 13
implies that r′ ≥ (1− 2δ− 2γ− 2ε)r′′. Theorem 16 says that BΩ′′ can only be covered c16 times by
the balls B′. So, by volume packing |U1| ≤ α, where α = (1− 2δ − 2γ − 2ε)−d.
Case 2: u ∈ U2 = {u ∈ U : |u− v| > 2εr′′}. Lemma 18 implies that |U2| ≤ c18.

We now conclude that |U | = |U1|+ |U2| ≤ α+ c18. Choosing c21 = (d+1)c16(α+ c18) completes
the proof.

11 The Quality Invariant

In this section, we will prove that NetMesh maintains the quality invariant throughout the course
of the algorithm. As shown in Section 10, this is an important property to have. Our goal will be
to prove the following.

Theorem 22. For any input, the intermediate meshes of the NetMesh algorithm are τ ′′-quality,
where τ ′′ depends only on the mesh parameters.

The proof will follow directly from Lemmas 23 and 29 below. The former guarantees that
the quality is bounded after every call to InsertInput. The latter guarantees that the quality is
bounded throughout the Clean operation.

11.1 Quality during input insertion.

In this section, we will show that starting with a τ -quality mesh and inserting an input point
results in a τ ′-quality mesh where τ ′ is a constant that depends only on the meshing parameters.
Throughout this section, let M be the τ -quality starting mesh and let M ′ be the mesh after
executing InsertInput(v) for some v ∈ P . Whenever we refer to a cell VorM (u) or VorM ′(u), ru
and r′u denote the respective in-radii and Ru, R

′
u denote the out-radii. We say that a cell VorM (u)

is caged during InsertInput if a new cage is added that is contained in VorM (u).

Lemma 23. There is a constant τ ′ depending only on the meshing parameters such that the mesh
after every call to InsertInput is τ ′-quality.

20

Proof. The Clean procedure explicitly guarantees that the starting mesh M is τ -quality. We need

to prove that all cells VorM ′(u) (excepting cage vertices) have aspect ratio at most τ ′, i.e. R′
u

r′u
≤ τ ′.

Fix one such u. There are four different cases to consider:

1. The Voronoi cell in M , VorM (u), had aspect ratio at most τ .
2. u = CΩ is a newly created cage.
3. u was a cage vertex in M that got released.
4. u = v is the newly inserted input vertex.

Case 1: VorM (u) had aspect ratio at most τ . If VorM (u) was caged during InsertInput

then Lemma 25 implies that VorM ′(u) has aspect ratio at most c25. Otherwise, Lemma 24 implies
that ru ≤ c24r

′
u. In this case, the out-radius cannot go up with the addition of more points so

R′
u ≤ Ru. Thus, since Ru ≤ τru, we get that R′

u ≤ c24τr
′
u as desired.

Case 2: u = CΩ is a newly created cage. For this case, Lemma 28 implies that R′
u ≤ c28r

′
u.

Case 3: u was a cage vertex in M that got released. If u is caged then Lemma 25
implies that its aspect ratio is at most c25. Otherwise, Lemma 24 implies that ru ≤ c24r

′
u. Let CΩ

be the released cage and let c be its center. The cage spacing guarantees that rΩ ≤ sru, where
s = (δ − γ)(1 − δ − γ). So, it follows that

rΩ ≤ c24sr
′
u. (13)

Now, we must consider the cases where v encroached the inside or the outside of Ω. For an
outer encroachment, Lemma 26 implies that Rc ≤ c26rΩ, where Rc is the out-radius of VorM (CΩ).
The out-radius of a cage is strictly greater than the out-radius of its cage vertices, so R′

u < Rc and
thus by (13), R′

u < c26c24sr
′
u.

For an inner encroachment, we call GrowCage, which conditionally adds a larger cage around
the existing cage before releasing it. Lemma 27 implies that R′

u ≤ c27rΩ. So, (13) implies R′
u ≤

c27c24sr
′
u.

Case 4: u = v is the newly inserted input vertex. Note that in all of the preceding cases,
inserting u only increased the aspect ratio bound. Consequently, by the time InsertInput actually
adds u to the mesh, it is added to a quality mesh M ′′ with the same domain hierarchy as M ′. Let
Ω be the domain u is inserted into. Let w be the nearest vertex to u in M ′′

Ω. Note that u is ε-medial
in M ′′, for otherwise we would have created a new domain or yielded when inserting w, and so
fΩM ′′(u) ≤ 1

ε |u − w| ≤ 3
εr

′
u. Since M ′′ is quality and the D-ball centered at the farthest corner of

VorM ′(u) is empty in M ′′, Lemma 14 implies that R′
u ≤ c14f

Ω
M ′′(u). Thus, R′

u ≤
3c14
ε r′u.

Lemma 24. If VorM ′(u) is cell that is not caged during InsertInput(v), then ru ≤ c24r
′
u.

Proof. We show the nearest neighbor of VorM ′(u) cannot be too close. If it has a new nearest
neighbor, it can only be from a neighboring cage recently added or the new input vertex. Since
u does not encroach any new cages, they can only decrease the in-radius by a 1 − ε factor. Since
it was not caged, v must have been medial and therefore r′u can only go down by a ε

2 factor. So,
choosing c24 =

2
ε(1−e) suffices to yield ru ≤ c24r

′
u as desired.

Lemma 25. If VorM ′(u) is caged during InsertInput(v), then R′
u ≤ c25r

′
u, where c25 depends

only on the meshing parameters.

Proof. Let CΩ be the cage. The new Voronoi cell is contained in the newly formed domain, so
R′

u ≤ rΩ. If any other point was added to Ω, then it must have been v and so by construction,
r′u ≥

ε
2rΩ. So, it suffices to choose c25 =

2
ε .

21

The following two lemmas show that cage vertices released in the algorithm have out-radii
bounded by a constant times the radius of the cage they belonged to.

Lemma 26. Let CΩ be a cage in a hierarchical mesh M and let Ω′ = p(Ω). Suppose there exists a
point v that is ε-medial in Ω′ and outer encroaches CΩ. If VorM (CΩ) has aspect ratio at most τ then
the out-radius of VorM(CΩ) is at most c26rΩ, where c26 depends only on the meshing parameters.

Proof. Let R denote the out-radius of VorM (CΩ) and let c be the center of CΩ. Since the aspect
ratio is at most τ , it follows that R ≤ τ fΩ

′

M (c). Let w be the second nearest neighbor of v in MΩ′ .
Then, we can bound fΩ

′

M (c) as follows.

fΩ
′

M (c) ≤ fΩ
′

M (v) + |c− v|
[

fΩ
′

M is 1-Lipschitz
]

(14)

≤ |v − w|+ |c− v| [by the choice of w] (15)

≤ (1 +
1

ε
)|c− v| [v is ε-medial] (16)

≤
1 + ε

ε2
rΩ. [v encroaches Ω] (17)

So, it suffices to choose c26 =
τ(1+ε)

ε2
.

Lemma 27. Let CΩ be a cage in a hierarchical mesh M . Let M ′ be the resulting mesh after
GrowCage(CΩ). If VorM (CΩ) has aspect ratio at most τ then the out-radius of VorM ′(u) is at
most c27rΩ for all u ∈ CΩ, where c27 depends only on the meshing parameters.

Proof. Let Ru denote the out-radius of VorM ′(u). In the GrowCage routine, either a new cage is
added or it is not. In the former case, the new cage has radius rΩ

ε so Ru ≤
rΩ
ε in this case. If the

new cage is not added, it is because, rC ≤
rΩ
ε . Because we assumed that the Voronoi cell of CΩ

had aspect ratio at most τ , it follows that RC ≤ τrC ≤
τrΩ
ε . By the definition of RC , we have that

Ru ≤ RC and thus Ru ≤
τrΩ
ε as desired.

Lemma 28. If u = CΩ is a cage added during InsertInput, then the R′
u ≤ c28r

′
u, where c28

depends only on the meshing parameters.

Proof. If u is caged, then Lemma 25 implies R
′
u ≤ c25r

′
u. So, we may assume that u is not caged.

Let c be the center of Ω and Ω′ is the previous domain that CΩ as inserted into. So, fΩ
′

M (c) = 3ru
and thus Lemma 24 implies that

fΩ
′

M (c) ≤ 3c24r
′
u. (18)

Let B be the D-ball centered at the far corner x of VorM ′(u) and let r be its radius. So,
R′

u ≤ r + rΩ. Since CΩ is not encroached, we have that rΩ ≤ r and thus

R′
u ≤ 2r. (19)

Since B was empty in M , Lemma 14 implies that there is a y ∈ Ω such that

fΩ
′

M (y) ≥ c14r. (20)

So, fΩ
′

M (y) ≤ fΩ
′

M (c) + rΩ by the Lipschitz property of fΩ
′

M . Next, rΩ < r′u, so (18) implies that
fΩ′

M (y) ≤ (3c24 + 1)r′u. So, by (20),
r ≤ c14(3c24 + 1)r′u. (21)

Therefore, (19) and (21) imply that R′
u ≤ 2c14(3c24 +1)r′u. Choosing c28 = 2c14(3c24 +1) completes

the proof.

22

11.2 Quality during the refinement process.

Lemma 29 (Clean preserves quality). Let M ′ be any intermediate mesh in the course of running
Clean(M) on a τ ′-quality mesh M . Then, M ′ is τ ′′-quality, where τ ′′ depends only on the meshing
parameters.

Proof. Let V = VorΩM ′(v) for some v ∈M ′
Ω and Ω ∈ HM ′. We need to prove that the aspect ratio

RV

rV
is at most τ ′′. There are two cases: V is the Voronoi cell of a vertex or V is the Voronoi cell of

a cage.
Case 1: V is the Voronoi cell of the vertex v. First, we observe that there is D-ball
B = ball(x,RV) centered on the farthest corner of V . By Lemma 14, RV ≤ 24τ ′2fΩM (v). Now, we
observe that rV ≥

1
3 f

Ω
M ′(v) by Lemma 2. We apply Lemma 48 to get that rV ≥

1
3K ′ fΩM (v). So, we

get that RV

rV
≤ 72K ′τ ′2.

Case 2: V is the Voronoi cell of a cage centered at v. Since no new cages are created
during Clean, it must be that v ∈ M . Let c be the center of the cage C that contains v. The
cage spacing guarantees that rV ≥

δ−2γ
2 |c − v|. Let s be the Steiner point whose insertion caused

C to be released. Let M ′′ be the mesh it was inserted into and let Ω′ be the domain it encroached.
Now, RV cannot be larger than the out-radius of Vor(C) in M ′′, which, in turn, is at most RC , the
out-radius of Vor(C) in M because Voronoi cells can only shrink during cleaning. We now bound
RC as follows:

RC ≤ τ ′rC
[

because M is τ ′-quality
]

(22)

≤ τ ′fΩ
′

M (c) [by Lemma 2] (23)

≤ τ ′K ′fΩ
′

M ′′(c). [by Lemma 48] (24)

Now, since s was inserted by a Clean operation into Ω′, fΩ
′

M ′′(c) ≤ 3|c − s|. Moreover, since s

encroaches, we have that |c− s| ≤ |c−v|
ε . So, we conclude that

RV ≤
3τ ′K ′(1 + ε)

ε(1 − ε)(δ − 2γ)
rv.

12 Point Location Analysis

Definition 9. A vertex v ∈ M touches an uninserted point u ∈ P \M if when v was inserted
into M there were intersecting D-balls Bu and Bv containing u and v respectively.

The quality invariant and Theorem 4 guarantee that only a constant number of balls are created
or destroyed during an insertion, so the total amount of point location work done on any input
point is O(t), where t is the number of times it was touched.

Theorem 30. The total cost of point location in the NetMesh algorithm is O(n log n).

Proof. As noted before, it suffices to count the number of touches on uninserted input points
throughout the algorithm. Since there are only O(log n) rounds, it will suffice to show that no
input point can be touched more than a constant number of times in a single round.

LetM be the mesh at the start of a round. Consider any point p ∈ P . We will show that p cannot
be touched more than a constant number of times in this round. By definition, a point x touches p

23

if dDM′ (p, x) ≤ 1 in the mesh M ′ just prior to inserting x. So, it follows that dBM
(p, x) ≤ 1 because

D-balls in M ′ are empty of points of M . Moreover, by Lemma 11, dDM
(p, x) ≤ 2. Therefore, the

set of points that can touch p this round are all contained in one of the constant number of D-balls
that are within 2 hops of p in GDM

. In Lemma 31 below, we show that only a constant number of
points are added to any D-ball in a single round. Thus, the total number of points that can touch
p in a round is at most a constant.

Lemma 31. In any round starting with a mesh M , at most a constant number of points are added
to any D-ball of M .

Proof. Fix a particular round and let B be a D-ball of M . Let M ′ denote the mesh at the end of
the round. Let P ′ denote the input points of M ′. We wish to upper bound the number of points
of M ′ in B. By standard mesh size analysis,

|M ′ ∩B| =
∑

Ω∈HM′

O

(

∫

BΩ∩B

dx

fΩ
P ′
Ω

(x)d

)

≤
∑

Ω∈HM′

O

(

∫

BΩ∩B

dx

fΩ
P ′
Ω
∪MΩ

(x)d

)

. (25)

Lemma 32 shows that there are only c32 terms in this summation and Lemma 35 shows each term
is at most c35. Thus, we conclude that |M ′ ∩B| ≤ c32c35.

Lemma 32. Let M and M ′ be the meshes before and after a round of the NetMesh algorithm.
For any D-ball B in M ′, at most a constant number of domains of HM ′ intersect B.

Proof. Let x be the center of B. There are only a constant number of domains ofHM intersecting B,
because each contains a D-ball intersecting B and Theorem 4 implies there can only be a constant
number of such balls. Any newly created domains must have been caused by the insertion of an
input point y ∈M ′ \M . However, if the new domain intersects B then either y caused a cage from
M to grow or dBM

(x, y) ≤ 5. In either case, there are only a constant number of new domains
intersecting B.

In the following lemmas, we fix a particular domain Ω and use the following simplified notations.
We number the k input points added this round as P ′

Ω \PΩ = {p1, . . . , pk} where the ordering is the
one given in Lemma 33 below. The part of the ball of Ω contained in B is defined as A = BΩ ∩B.
The near input points are denoted Q and are formally defined as

Q = {q ∈ P ′
Ω \ PΩ : dBM

(q, x) ≤ 5 for some x ∈ B}.

The index set of the far input points is I = {i : pi /∈ Q} and I0 = I ∪ {0}. Let Si = MΩ ∪
{p1, . . . , pi} and set S0 = M . The function fi is equal to fΩSi

.
We partition the set A into pieces based on which far point was the last to affect the feature

size:
Uj = {x ∈ A : max{i ∈ I : fi(x) 6= fi−1(x)} = j}

and
U0 = A \

⋃

j∈I

Uj.

24

Define hi and hij as

hi =

∫

A

dx

fi(x)d

and

hij =

∫

Uj

dx

fi(x)d
.

Since A is the disjoint union of {Uj : j ∈ I0},

hi =
∑

j∈I0

hij .

Lemma 33. There exists an ordering {p1, . . . , pk} of P ′
Ω \ PΩ, such that hi − hi−1 ≤ c33, for all

i = 1 . . . k.

Proof. The desired ordering is a so-called well-paced ordering. It is one for which fΩSi
(pi) ≥

αfΩSi−1
(pi) for all i. In previous work [MPS08], we showed that the change in the feature size

integral over any domain is at most a constant after inserting a well-paced point. Calling this
constant c33, it will suffice to show that P ′

Ω \ PΩ is well-paced with respect to MΩ. This requires
the same case analysis as used in Lemma 47, though it is easier in this case because we only require
the inputs to be well-paced with respect to M − Ω rather than the stronger condition that they
be well-paced with respect to the bounding cage. Alternatively, one could get an explicit ordering
directly from the algorithm by keeping a list for each domain, appending new input points to the
list corresponding to the domain that contains them, and appending the list for a released domain
to the list of its parent. That the resulting list satisfies the well-paced condition is immediate from
the algorithm and the feature size invariant.

Lemma 34. |Q| ≤ c34, where c34 is a constant that depends only on d and the meshing parameters.

Proof. By definition, q ∈ Q implies that dBM
(q, x) ≤ 5 for some x ∈ B. It is easily checked that

Theorem 19 and Lemma 11 implies that at most 10c19 D-balls can contain points of Q. Each round
is defined by selecting only a constant size net from each D-ball. So each D-ball only contributes
at most a constant number of points to Q and thus the total size of Q is at most a constant.

Lemma 35.
∫

BΩ∩B
dx

fΩ
P ′
Ω
∪MΩ

(x)d
≤ c35, where c35 is a constant that depends only on d and the meshing

parameters.

Proof. In our simplified notation, the statement reduces to proving that hk ≤ c35. Writing hk as a
telescoping sum, we get

hk = h0 +
k
∑

i=1

(hi − hi−1)

= h0 +
∑

pi∈Q

(hi − hi−1) +
∑

i∈I

(hi − hi−1)

≤ h0 + c33c34 +
∑

i∈I

(hi − hi−1) [by Lemmas 33 and 34]

Far input points cannot change the feature size by very much. This is formalized in Lemma 51,
where it is proven that

∑

i∈I

(hi − hi−1) ≤ (c51 − 1)h0.

25

The feature size in an empty ball cannot be too small compared to its radius. Specifically, Lemma 52
shows that h0 ≤ c52. So setting c35 = c33c34 + c51c52 suffices to complete the proof. See Appendix D
for Lemmas 51 and 52 and their proofs.

13 Finishing the mesh

The finishing process takes a hierarchical quality mesh and returns a well-spaced mesh.

Theorem 36. Given a hierarchical quality mesh, the FinishMesh procedure runs in O(m) time,
where m is the size of the output mesh.

Proof. The GrowCage and Clean procedures preserve the quality of the mesh, so each insertion
takes constant time. There is no point location work to be done, so the total running time is linear
in the number of points added.

14 Conclusion and Future Work

In this paper, we have given an algorithm for generating quality hierarchical meshes of point sets
with size O(n) in O(n log n) time. We also showed how to extend these hierarchical meshes to
traditional well-spaced meshes in optimal output-sensitive time O(n log n+m). The algorithm and
its analysis introduce novel uses of ǫ-nets and the linear-size meshing theory introduced in [MPS08].

Future Work We have restricted our discussion to the rarefied case of point set inputs. We expect
it should now be possible to design a work efficient algorithm for inputs with higher dimensional
features such as segments and faces. The algorithm presented is basically a work efficient parallel
algorithm. It should be possible to show the present algorithm runs in polylog parallel time with
no increase in work and thus beating the time and work bounds in parallel SVR [HMP07].

Yet another issue is integrating ideas from the NetMesh algorithm into the already relatively
fast SVR code [AHMP07]. Future experiments in this direction are in order. The algorithm removes
the spread term in the run time for the mesh based persistent homology algorithms [HMOS10]. It
may also have applications for efficient surface reconstruction especially in the higher dimensional
cases[Dey07].

26

References

[AHMP07] Umut A. Acar, Benôıt Hudson, Gary L. Miller, and Todd Phillips. SVR: Practical
engineering of a fast 3D meshing algorithm. In Proc. 16th International Meshing
Roundtable, pages 45–62, 2007. 14

[BEG94] Marshall Bern, David Eppstein, and John R. Gilbert. Provably Good Mesh Generation.
Journal of Computer and System Sciences, 48(3):384–409, June 1994. 1

[BET99] Marshall W. Bern, David Eppstein, and Shang-Hua Teng. Parallel construction of
quadtrees and quality triangulations. International Journal of Computational Geom-
etry and Applications, 9(6):517–532, 1999. 1

[Cha00] Bernard Chazelle. The Discrepancy Method. Cambridge University Press, 2000. 6.1,
6.5

[Cla88] Kenneth L. Clarkson. A Randomized Algorithm for Closest-Point Queries. SIAM
Journal on Computing, 17(4):830–847, August 1988. 1

[Dey07] T. K. Dey. Curve and Surface Reconstruction : Algorithms with Mathematical Analysis.
Cambridge University Press, 2007. 14

[Gon85] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. 4

[HMOS10] Benôıt Hudson, Gary L. Miller, Steve Y. Oudot, and Donald R. Sheehy. Topological
inference via meshing. In Symposium on Computational Geometry, 2010. 14

[HMP06] Benôıt Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. In Pro-
ceedings of the 15th International Meshing Roundtable, pages 339–356, Birmingham,
Alabama, 2006. Long version available as Carnegie Mellon University Technical Report
CMU-CS-06-132. 1, 3, 7, 8, 10

[HMP07] Benôıt Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Refine-
ment. In 19th Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures, pages 339–347, San Diego, June 2007. 1, 14

[HPM06] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional
metrics, and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.
2

[HPÜ05] Sariel Har-Peled and Alper Üngör. A Time-Optimal Delaunay Refinement Algorithm
in Two Dimensions. In Symposium on Computational Geometry, 2005. 1

[Mat02] Jǐŕı Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002. 4

[MPS08] Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Linear-size meshes. In CCCG:
Canadian Conference in Computational Geometry, 2008. 1, 7, 8, 12, 14

[MTTW99] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. On the
radius-edge condition in the control volume method. SIAM J. on Numerical Anal-
ysis, 36(6):1690–1708, 1999. 7, 10

27

[MV00] Scott A. Mitchell and Stephen A. Vavasis. Quality mesh generation in higher dimen-
sions. SIAM J. Comput., 29(4):1334–1370 (electronic), 2000. 1

[Rup95] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. Algorithms, 18(3):548–585, 1995. Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA) (Austin, TX, 1993). 8

[Yao81] Andrew Chi-Chih Yao. A lower bound to finding convex hulls. J. ACM, 28:780–787,
October 1981. 1

A The Ball Cover Theorem

A.1 Carathéodory’s Theorem

Carathéodory’s Theorem is a classic result on convex sets that is critical to our proof of the D-ball
Cover Theorem.

Theorem 37 (Carathéodory’s Theorem). Let A ⊂ R
d. If x ∈ cone(A) then x ∈ cone(A′) for

some A′ ⊆ A such that |A′| ≤ d. If x ∈ conv(A) then x ∈ conv(A′) for some A′ ⊆ A such that
|A′| ≤ d+ 1.

We will need the following extended form of Carathéodory’s Theorem for V-polyhedra, i.e. those
formed by the Minkowski sum of a polytope and a cone.

Corollary 2. If x ∈ conv(A) + cone(B), then there exist subsets A′ ⊂ A and B′ ⊂ B such that

x ∈ conv(A′) + cone(B′) and |A′|+ |B′| ≤ d+ 1.

Moreover, if |A′| = 0 then |B′| ≤ d.

Proof. Using the cone form of Carathéodory’s Theorem, it suffices to observe that

x ∈ conv(A) + cone(B) if and only if

[

x
1

]

∈ cone

[

A B
1 0

]

.

We will also make use of the following technical lemma related to V-polyhedra.

Lemma 38. If cone(v) ⊆ conv(A) + cone(B) for some v ∈ R
d then v ∈ cone(B).

Proof. We will prove the contrapositive. Suppose that v /∈ cone(B). Then for a sufficiently large
t, d(tv, cone(B)) > maxa∈A |a|. Let z = a + b be the nearest points of conv(A) + cone(B) to tv,
where a ∈ conv(A) and b ∈ conv(B).

|tv − z| ≥ |tv − b| − |z − b|

= |tv − b| − |a|

> 0.

Thus, tv /∈ conv(A) + cone(B) and therefore cone(v) 6⊆ conv(A) + cone(B).

Lemma 39. If c is a point in the V-polyhedron conv(Q) + cone(H), where c 6= 0 and Q 6= ∅ then
for all x ∈ R

d, either or both of the following hold:

28

1. xT (q − c) ≥ 0 for some q ∈ Q, or

2. xTh > 0 for some h ∈ H.

Proof. Let the coefficients αi and βj be such that

c =

|Q|
∑

i=1

αiqi +

|H|
∑

j=1

βjhj ,

where αi, βj ≥ 0 and
∑

αi = 1. Suppose for contradiction that xT (qi − c) < 0 for all qi ∈ Q, and
xThj ≤ 0 for all hj ∈ H. So, it follows that

|Q|
∑

i=1

αix
T (qi − c) +

|H|
∑

j=1

βjx
Thj < 0.

Factoring this expression implies that

xT





|Q|
∑

i=1

αiqi +

|H|
∑

j=1

βjhj −

|Q|
∑

i=1

αic



 < 0.

However, the left side of the above inequality simplifies to xT (c− c) = 0, a contradiction.

Lemma 40. If c ∈ cone(H) for some H ⊂ R
d and Bc is a ball centered at c that does not contain

the origin, then for all x ∈ Bc, there exists h ∈ H such that xTh > 0.

Proof. Since c ∈ cone(H), there are nonnegative coefficients {βh}h∈H such that c =
∑

h∈H αhh. Fix

any x ∈ Bc. Since 0 /∈ Bc, |c− x| < |c− 0| and therefore xT c > |x|
2 > 0. Suppose for contradiction

that xTh ≤ 0 for all h ∈ H. Then xT c =
∑

h∈H αhx
Th ≤ 0, a contradiction.

A.2 A simpler version of the D-ball Cover Theorem

We warm up with a simpler version of the main result. It deals with the special case of balls
centered in bounded Voronoi cells. It only proves the weaker bound of d+1 rather d balls to cover
and it does not prove that the covering balls are pairwise intersecting.

We start with a lemma that gives a sufficient condition for a point x to be in a bounded D-ball
Bq.

Lemma 41. Let c, q, and v be three points such that vT q = vT c = 0. Let Bq be an open ball
centered at q with v on its boundary. Let Bc be an open ball centered at c that does not contain v.
If x ∈ Bc and xT (q − c) ≥ 0 then x ∈ Bq.

Proof. Let x ∈ Bc and xT (q − c) ≥ 0 according to the hypothesis. Since xT (q − c) ≥ 0, we have
that

xT q ≤ xT c. (26)

Since x ∈ Bc and v /∈ Bc, |c− x| < |c− v| and therefore because vT c = 0,

xTx− 2xT c < vT v. (27)

29

It will suffice to prove that |q − x| < |q − v|. This follows from the following inequalities.

|q − x|2 = qT q − 2xT q + qT q

≤ qT q − 2xT c+ qT q [by (26)]

≤ vT v + qT q [by (27)]

≤ |q − v|2.
[

because vT q = 0
]

Theorem 42. Let M be a finite set. For any ball Bc ∈ BM centered in a bounded Voronoi cell,
there is a collection of at most d+ 1 D-balls that cover Bc.

Proof. Let c be the center of Bc and let v be the nearest neighbor of c in M . By Carathéodory’s
Theorem, there exists a subset Q of the corners of Vor(v) such that c ∈ conv(Q) and |Q| ≤ d + 1.
So, for any x ∈ R

d, there is a q ∈ Q such that xT (q−c) ≥ 0. Each q ∈ Q corresponds to a D-ball Bq

of radius |q − v|. Without loss of generality, we may assume v is the origin. Therefore, Lemma 41
implies that x ∈ Bq.

A.3 The D-ball Cover Theorem

To prove the more general ball cover theorem, we need to be more careful to deal with infinite
D-balls. The infinite D-balls are those corresponding to the facets of the convex hull of M . Thus,
they are in correspondence with the unbounded 1-faces of VorM . The Voronoi cells of VorM are V-
polyhedra. That is, they can be written as the Minkowski sum of a convex polytope and a polytopal
cone. So, there exists finite sets A,B such that VorM (v) = conv(A) + cone(B). Moreover, the set
A is a subset of the Voronoi corners and B is a subset of the normals of the facets of conv(M).
Thus, the points of A and the vectors of B are all in correspondence with the D-balls of DM .

Theorem 43 (The D-ball Cover Theorem). For all B ∈ BM , there exist d D-balls b1, . . . , bd ∈ DM

such that B ⊆
⋃d

i=1 bi. Moreover, these D-balls have a nonempty, common intersection.

Proof. Let c be the center of B and let v be the nearest neighbor of c in M . Consider the ray
starting from v that passes through c parameterized as r(t) = v + t(c − v) for t ≥ 0. We must
distinguish between the cases where r(t) ∈ Vor(v) for all t ≥ 0 and where there is some t for which
r(t) /∈ Vor(v).
Case 1: r(t) ∈ Vor(v) for all t ≥ 0. Voronoi cells are V-polyhedra and can be written as
Vor(v) = conv(Q) + cone(H) where Q is a subset of D-ball centers and H is a set of normals of
unbounded D-balls. Without loss of generality, we may assume that v = 0. By Carathéodory’s
Theorem, there is a subset H ′ ⊆ H of size d such that c ∈ cone(H ′). So, Lemma 40 implies that
for all x ∈ B there is an h ∈ H ′ for which xTh > 0. So, B is covered by the d unbounded D-balls
corresponding to the vectors in H ′. Moreover, cTh > 0 and therefore, the chosen D-balls have a
common intersection at c.
Case 2: r(t) /∈ Vor(v) for some t ≥ 0. In this case, the ray must leave the Voronoi cell and so
for some t′, the point c′ = r(t′) is in Vor(u)∩Vor(v) for some u in M . The set Vor(u)∩Vor(v) is a
d− 1-dimension V-polyhedron, and thus can be written as conv(Q) + cone(H) where Q is a subset
of D-ball centers and H is a set of normals of unbounded D-balls. So, by Carathéodory’s Theorem,
there are subsets Q′ ⊂ Q and H ′ ⊆ H such that c ∈ conv(Q′) + cone(H ′) and |Q′| + |H ′| ≤ d.
Without loss of generality, we may assume v+u

2 is the origin. For q ∈ Q′ or h ∈ H ′ let Bq and
Bh be the bounded and unbounded D-balls corresponding to q and h respectively. Fix any x ∈ B.

30

Lemma 39 implies that xT (q − c) ≥ 0 for some q ∈ Q′ or xTh > 0 for some h ∈ H ′. In the former
case, Lemma 41 implies that x ∈ Bq. In the latter case, x ∈ Bh, because 0 is on the boundary of
Bh for all h ∈ H.

We now observe that 0 ∈ Bq for all q ∈ Q′, because |q − v|2 = |q|2 + |v|2 > |q − 0|2. So, the
bounded D-balls all have a common intersection at 0 and in fact at a sufficiently small open ball
U centered at 0. So the intersection of U with the relative interior of cone(H ′) is contained in the
common intersection of the chosen D-balls.

B Technical Lemmas for Size Bounds

The following useful lemma guarantees that the feature size of any mesh vertex is maximized at the
time it is inserted. Such a fact would be trivial if not for the possibility to change the underlying
domains.

Lemma 44. If M is a hierarchical mesh constructed by the NetMesh algorithm, then for all
v ∈M ,

max
i

max
Ω∈Hi:
v∈MiΩ

fΩPi
(v) = f

Ωj

Pj
(v),

where j is the insertion time of v and Ωj ∈ Hj is the domain it is inserted into.

Proof. If v /∈ P then Ωi is the unique domain such that v ∈ MΩi
. However, PjΩj

⊆ PiΩi
. Thus,

fΩi

Pi
(v) ≤ f

Ωj

Pj
(v) for non-input points.

If v ∈ P , then it is possible for v to be in more than one MΩ. Clearly, the input feature size of v
will be maximized at the highest domain in the hierarchy that contains it, i.e. at the largest scale.
At time j, this domain is Ωj Just as with the Steiner point case, any changes to this highest level

domain do not eliminate any input points and therefore fΩi

Pi
(v) ≤ f

Ωj

Pj
(v) in this case as well.

Lemma 45. Let M be a τ -quality hierarchical mesh constructed incrementally. Given two vertices
u, v ∈M , if u was inserted before v then λv ≤

|u−v|
1−ε .

Proof. Let i be the insertion time of v and let Ω ∈ Hi be the domain it was inserted into. So,
λv = fΩMi

(v). If either u ∈ MiΩ or u /∈ BΩ then λv ≤ |u − v|. So we may assume u ∈ BΩ \M
′
Ω

and thus for some Ω′ ∈ children(Ω), u ∈ BΩ′ . Since v does not encroach on Ω′, we have that

|cΩ′ − v| ≤ |u−v|
1−ε . Moreover, cΩ′ ∈MΩ, so λv ≤ |cΩ′ − v| ≤ |u−v|

1−ε as desired.

Lemma (Lemma 6). If M is a hierarchical mesh constructed incrementally that satisfies the in-
sertion radius invariant, then M also satisfies the feature size invariant.

Proof. Let Ω be any domain and let v be any vertex of MΩ. Let u be the nearest neighbor of v
in MΩ. This implies that fΩM (v) = |u − v| and so it will suffice to prove fΩP (v) ≤ Kv|u − v|. Let
i (respectively j) be the insertion time of v (respectively u) and let Ωi (Ωj respectively) be the
domain it was inserted into. Let K ′

v ∈ {K
′
C ,K

′
S ,K

′
I} be the appropriate constant depending on

how v was inserted and similarly for K ′
u. We choose K so that

K ≥
max{K ′

C ,K
′
S ,K

′
I}

1− ε
+ 1 (28)

There are two cases to consider.

31

Case: u inserted before v:

fΩP (v) ≤ fΩi

Pi
(v) [by Lemma 44]

≤ K ′
vλv [by assumption]

≤ K ′
v

|u− v|

1− ε
[by Lemma 45]

< K|u− v|. [by (28)]

Case: v inserted before u:

fΩP (v) ≤ fΩP (u) + |u− v|
[

fΩP is 1-Lipschitz
]

≤ f
Ωj

Pj
(u) + |u− v| [by Lemma 44]

≤ K ′
uλu + |u− v| [by assumption]

≤ K ′
u

|u− v|

1− ε
+ |u− v| [by Lemma 45]

≤ K|u− v|. [by (28)]

Lemma 46. Let Ω be any domain in the output. There exists an ordering p1 . . . , pj of the vertices
of PΩ such that for each i = 3 . . . j, fΩPi

(pi)/f
Ω
Pi−1

(pi) ≥
12
ε3

+ 1, where Pi = {p1, . . . , pi}.

Proof. The desired ordering can be found by starting with the two farthest points of PΩ as p1 and
p2 followed by greedily adding any point that satisfies the desired property. Suppose this process
gets stuck after adding i points and some j − i points are leftover. Let p ∈ Pi be such that some
leftover point lies in VorPi

(p) and let q be the farthest such point from p. Let p′ be the nearest
neighbor of p in Pi. Let r = fPΩ

i
(q) = |p − q|. Since the ordering was stuck, it must be that

|q−p′|/|q−p| ≥ 12
ε3+. By the triangle inequality, |p′−p| ≥ |p′−q|− |p−q|. Combining the previous

two statements give that |p′ − p| ≥ 12r
ε3 . By our choice of p′ as the nearest neighbor of p, we get

that annulus(p, 2r, 6rε3) is contained in VorPi
(p). Moreover, by our choice of q, this annulus is empty

of points from PΩ, contradicting Lemma 8.

Lemma 47. Let q and q′ be any two input points and let r be the distance between them. If
A = annulus(q, 2r, 6r

ε3
) contains no input points, then q and q′ are inside some cage contained in A

for all intermediate meshes after each has been inserted.

Proof. Let p1, . . . , pk be all input points in ball(p, 2r) ordered by the order in which they were
inserted. Clearly q and q′ are among the pi’s. We will proceed by induction on k. In the base case,
there are only two points, p1 and p2. Let Ω be the domain into which p2 was inserted and P ′ and
M ′ be the input and mesh vertices in the domain just after insertion. Since A contains no input
points and fΩP is Lipschitz, fΩP (p1) ≥

6r
ε3
− 2r ≥ 4r

ε3
. So, by Lemma 7, fΩM (p1) ≥

4r
Kε3

. Since the
algorithm chooses ε < 1

K , we have that fΩM (p1) ≥
4r
ε2

and therefore, using the Lipschitz property,
fΩM (p2) ≥ fΩM (p1) − |p1 − p2| ≥ 4r(1

ε2
− 1). After insertion, we have that fΩM ′(p2) ≤ 4r, because

p1 ∈M ′
Ω. So, the ratio of nearest to second nearest neighbor distances for p2 is bounded as

fΩM ′(p2)

fΩM (p2)
≤

4r

4r(1
ε2
− 1)

< ε.

32

Thus, the algorithm adds a cage around p1 and p2 as desired.
The inductive step has two cases. Either the ith point is added inside or outside the cage

surrounding the first i− 1 points (guaranteed to exist by induction). The latter case is identical to
the base case, so it only remains to consider the case where pi lies inside the cage from the previous
round. If pi does not encroach this cage, then it remains and we are done. If pi does encroach this
cage, then it will grow by a factor of 1

ε . However, it’s total size cannot exceed
1
ε2

times the distance
from pi to the center because otherwise it would not encroach. This distance is at most 4r, so the
cage is in A. Thus, the grown cage also satisfies the induction hypothesis and we are done.

C Technical lemmas regarding the feature size function

The following lemma extends the feature size invariant to mesh vertices in BΩ \MΩ.

Lemma 48. If (M,H) is a hierarchical mesh of an input set P such that the feature size invariant
holds and no domain is ε-encroached then for all domains Ω ∈ H then for all u ∈M ∩BΩ,

fΩP (u) ≤ αfΩM (u),

where α is a constant depending only on the meshing parameters.

Proof. Fix a domain Ω and a vertex u ∈M ∩BΩ. If u ∈MΩ, then the feature size invariant implies
the desired result. So, we may assume that u /∈ MΩ. Let v be the nearest neighbor of u in MΩ.
Since u does not ε-encroach on any domains, we have that

|u− v| ≤ εfΩM (v). (29)

So,

fΩM (v) ≤
1

1− ε
fΩ
M(u), (30)

because fΩM is Lipschitz.

fΩP (u) ≤ fΩP (v) + |u− v|
[

fΩP is 1-Lipschitz
]

≤ KfΩM (v) + |u− v| [by the feature size invariant]

≤ (K + ε)fΩM (v) [by (29)]

≤
K + ε

1− ε
fΩM (u). [by (30)]

For quality meshes, it is possible to extend the feature size invariant to all points in the plane.

Lemma 49. If M is a τ ′-quality mesh of an input set P such that the feature size invariant holds
and no domain is ε-encroached then for all domains Ω ∈ HM then for all x ∈ BΩ,

fΩP (u) ≤ βfΩM (u),

where β is a constant depending only on the meshing parameters.

33

Proof. Fix a domain Ω and a point x ∈ BΩ. Let u be the nearest neighbor of x in M . Observe
that u ∈ BΩ. So by the Lipschitz property of fΩP and Lemma 48,

fΩP (x) = αfΩM (u) + |u− x|.

Because fΩM is also 1-Lipschitz,

fΩP (x) = αfΩM (x) + (1 + α)|u− x|.

Because we chose u to be the nearest neighbor, the diametral ball of u and x is empty and centered
in BΩ. Thus, Lemma 14 implies that

|u− x| ≤ 24τ ′2fΩM (x).

So, choosing β = α+ (1 + α)24τ ′2 we have that fΩP (x) ≤ βfΩM (x) as desired.

D Technical Lemmas for the Point Location Analysis

Lemma 50. For all i ∈ I and x ∈ Ui, f0(x) ≤ c50fi(x), where c50 =
1

1−e .

Proof. Fix an index i ∈ I and a point x ∈ Ui. Suppose for contradiction that fi(x) < (1− e)f0(x).
We will show that dBM

(x, pi) ≤ 5, contradicting the hypothesis that i ∈ I.
Recall that for x ∈ Ui, fi(x) 6= fi−1(x). Combined with our supposition that fi(x) < (1−e)f0(x),

this implies that there can be at most one point of MΩ in ball(x, 1
1−e |x− pi|). Call this point z and

let Z denote the set of points of M whose ancestor in MΩ is z.
We will construct a chain of balls B1, . . . , B6 from pi to x. To do this, the following claim is

useful.

If y ∈ ball(x, |x− pi|) does not encroach any domain of HM ′ then ball

(

x+ y

2
,
|x− y|

2

)

∩M ⊆ Z.

We will give the construction using this claim and then give its proof.
Let B1 be the maximal ball of BM tangent to pi centered on xpi. If x ∈ B1, then dBM

(x, p1) ≤ 1,
so we may assume that x /∈ B1 and therefore B1 ⊂ ball(x, |x− pi|). So the claim implies that some
vertex of Z is on the boundary of B1.

Let B4 be the maximal ball of BM tangent to x centered on xz. As with B1, we may assume
that pi /∈ B4 and thus the claim implies some vertex of Z is on the boundary of B4.

If Z = {z} then z ∈ ∂(B1) ∩ ∂(B4) and thus dBM
(x, pi) ≤ 1. So, we may assume that there is

some domain Ω′ ∈ HM ′ centered at z whose parent is Ω. Let r′ be the radius of Ω′. Since Ω′ is
not encroached and ε < 1

3 , annulus(z, r
′, 3r′) is empty of points of M . Any two points a, b of such

an annulus have dBM
(a, b) ≤ 3. This is easily seen by considering the plane through a, b, and z

and packing the annulus with balls of radius r′ as in Figure 3. Since both B1 and B6 intersect the
annulus, we may choose a ∈ B1 and b ∈ B6 and let B2, . . . , B5 be the balls packing the annulus on
the shortest path from a to b. The balls B1, . . . , B6 witness that dBM

(x, pi) ≤ 5 as desired.
To conclude the proof, we need only prove the claim. Let B′ = ball(c, r) be the ball under

consideration where c = x+y
2 and r = |x−y|

2 . Suppose for contradiction that there exists w ∈
B′ ∩ (M \ Z). Then, |c− w| < r = |x− c|. Let v be the ancestor of w in MΩ and note that v 6= z.
Observe that |x − y| ≤ (1 − ε)|x − v| for otherwise f0(x) ≤ |x − v| ≤ 1

1−εfi(x) contrary to our
supposition. It follows that

|x− v| ≥
2εr

1− ε
. (31)

34

a

b

Figure 3: Any two points a, b ∈ annulus(z, r′, 3r′) have dBM
(a, b) ≤ 3.

We can now bound |v − w| in terms of r as follows.

|v − w| ≤ ε|y − v| [y does not encroach]

≤ ε(|y − c|+ |c− w|+ |w − v|) [by the triangle inequality]

<
2εr

1− ε
. [|y − c| = r and |c− w| < r] (32)

This allows us to derive the following contradiction.

|c− w| ≥ |x− v|+ |v − w| − |c− x| [by the triangle inequality]

>

(

2r

1− ε
−

2ε

1− ε
− 1

)

r [by (31) and (32)]

= r.

Lemma 51.
∑

i∈I(hi − hi−1) ≤ (c51 − 1)h0.

Proof. First, we bound hjj using Lemma 50 as follows.

hjj =

∫

Uj

dx

fj(x)d
≤ cd

50

∫

Uj

dx

f0(x)d
= cd

50
h0. (33)

For any i ∈ I, define i∗ to be the largest element of I0 less than i. If i, j ∈ I and i > j, then
hij −h(i−1)j = 0 as guaranteed by the definition of Uj . Because fi ≤ fi′ for all i ≤ i′, h(i−1)j ≥ hi∗j
for all i. The desired bound is now proven as follows.

∑

i∈I

(hi − hi−1) ≤
∑

j∈I0

∑

i∈I:i≤j

(hij − h(i−1)j)

≤
∑

j∈I0

∑

i∈I:i≤j

(hij − hi∗j) [i∗ ≤ i− 1]

=
∑

j∈I0

(hjj − h0j)

≤
∑

j∈I0

(cd
50
− 1)h0j [by (33)]

= (cd
50
− 1)h0.

Choosing c51 = cd
50

completes the proof.

35

Lemma 52. h0 ≤ c52.

Proof. There are four types of domains to consider: the smallest domain Ω such that B ⊂ BΩ,
domains Ω such that |MΩ| = 0, domains Ω such that |MΩ| = 1, and domains Ω such that MΩ

contains an entire cage CΩ′ of some domain Ω′ ∈ HM . In the first case, the result follows easily
from Lemma 14. In the second case, fΩM = ∞, and thus, the integral evaluates to 0. In the third
case, it is easy to evaluate the integral directly using polar coordinates to find that it is constant.

The last case is the interesting one. We use the coarse bounds that fΩM (x) ≥ δrΩ′ for (1 −
δ − γ)rΩ′ ≤ |x − cΩ| ≤ 2rΩ′ and fΩM (x) ≥ 1

2 |x − cΩ| for |x − cΩ| > 2rΩ′ . Integrating with polar
coordinates centered at cΩ yields an answer O(log rΩ

r
Ω′
). Only a constant number of points in a

round may cause Ω′ to grow because all but one must lie in the Voronoi cell of CΩ and thus they
are all within a constant D-ball distance of one another. So, rΩ

r
Ω′

= O(1) and thus the integral also

evaluates to O(1).

36

	1 Introduction
	2 Beating the Spread
	3 Voronoi Refinement Basics
	4 Definitions and Notations
	5 Additively-Weighted Voronoi Diagrams
	6 The Algorithm
	6.1 Overview of the Algorithm
	6.2 Point Location Operations
	6.3 Incremental Updates to Hierarchical Meshes
	6.4 Refinement
	6.5 Input Ordering with -Nets
	6.6 Finishing the Mesh

	7 Overview of the Analysis
	8 Size Bounds
	9 Range Spaces and -Nets
	10 Bounding the ply
	11 The Quality Invariant
	11.1 Quality during input insertion.
	11.2 Quality during the refinement process.

	12 Point Location Analysis
	13 Finishing the mesh
	14 Conclusion and Future Work
	A The Ball Cover Theorem
	A.1 Carathéodory's Theorem
	A.2 A simpler version of the D-ball Cover Theorem
	A.3 The D-ball Cover Theorem

	B Technical Lemmas for Size Bounds
	C Technical lemmas regarding the feature size function
	D Technical Lemmas for the Point Location Analysis

