
Beating the Spread: Time-Optimal Point Meshing∗

[Extended Abstract]
†

Gary L. Miller
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15217

glmiller@cs.cmu.edu

Todd Phillips
Google Inc.

Pittsburgh, PA
toddphillips@gmail.com

Donald R. Sheehy
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15217

dsheehy@cs.cmu.edu

ABSTRACT
We presentNetMesh, a new algorithm that produces a con-
forming Delaunay mesh for point sets in any fixed dimen-
sion with guaranteed optimal mesh size and quality. Our
comparison-based algorithm runs in O(n log n + m) time,
where n is the input size and m is the output size, and with
constants depending only on the dimension and the desired
element quality. It can terminate early in O(n log n) time
returning a O(n) size Voronoi diagram of a superset of P ,
which again matches the known lower bounds.

The previous best results in the comparison model de-
pended on the log of the spread of the input, the ratio of
the largest to smallest pairwise distance. We reduce this
dependence to O(log n) by using a sequence of ǫ-nets to de-
termine input insertion order into a incremental Voronoi di-
agram. We generate a hierarchy of well-spaced meshes and
use these to show that the complexity of the Voronoi dia-
gram stays linear in the number of points throughout the
construction.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures, Geometrical problems and com-
putations

General Terms
Algorithms, Theory

Keywords
mesh generation, sparse Voronoi refinement, range spaces,
epsilon nets, spread

∗Partially supported by the National Science Foundation
under grant number CCF-0635257.
†A full version of this paper is available at
www.cs.cmu.edu/~dsheehy

c©ACM, 2011. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proc. of ACM Symposium on Com-
putational Geometry (SoCG’11), June 13–15, 2011, Paris, France.

1. INTRODUCTION
In this paper we present a new algorithm for meshing point

sets in fixed dimension. This is the first algorithm we know
of that is work-optimal in the comparison-based model in
the sense of [18]. Known work-efficient algorithms for mesh-
ing are one of two types. The first of these are based on
incremental refinement of the Voronoi diagram or Delaunay
triangulation. The only work-efficient of these in higher di-
mension performs a recursive Voronoi refinement where at
all times a “quality” Voronoi mesh is maintained. Unfortu-
nately, this leads to work of O(n log∆ +m) where n is the
input size, m is the output size and ∆ is the spread, the
ratio between the size of the bounding box and the distance
between the closest pair of features [10, 12]. The second type
uses the quadtree to generate the mesh. Work-efficient ver-
sions use bit manipulation of the coordinates of the points
to efficiently help with the point location [16, 3, 9]. These
algorithms are not optimal in the comparison model and
possibly more importantly, it is not known how to efficiently
handle higher dimensional features (segments, facets) with
these methods.

Our algorithm uses range space ǫ-nets to determine the in-
sertion order of the input points to improve the work bound
for point sets with large spread. Clarkson used a similar
method for doing point location in a Voronoi diagram [5].
In our approach, since we also add some Steiner points, we
can guarantee that the total size of the intermediate Voronoi
diagrams are only linear size. This insertion order requires
us to maintain a Voronoi diagram that need not have good
aspect ratio in the usual sense. Our algorithm will gener-
ate a linear-size mesh in fixed constant dimensions. In their
1994 paper Bern, Eppstein, and Gilbert showed how to gen-
erate such a linear-size mesh with no large angles [2]. In a
later paper we gave a Voronoi refinement algorithm that also
generates linear size meshes, [14] but had a running time of
only O(n log∆).

Because a standard good aspect ratio mesh is too large,
we maintain a weaker but sufficient condition, bounded ply.
Throughout the life of the algorithm we maintain a mesh
that is of bounded ply which will be used to bound the
point location work and the work to determine the insertion
order:

Definition 1. A Voronoi Diagram of a domain Ω is k-
ply if for every point x ∈ Ω at most k circumballs of the
Delaunay simplices contain x in their interior.

Using the bounded-ply property we can afford to maintain
a copy of each uninserted point in each Delaunay ball that

contains it. We pick an insertion ordering so that the num-
ber of uninserted points stored in a Delaunay ball decreases
geometrically, which we achieve using ǫ-nets.

Let P be the input points and M be a points that have
been inserted into the mesh so far including the Steiner
points. We say that M is an ǫ-net for P if any ball whose
interior is disjoint from M contains at most ǫn points from
P . We show, given a mesh M that is an ǫ-net, how to pick at
most a constant number of points per Delaunay ball so that
after their insertion the new mesh will be a ǫ/2-net. Thus,
a round consists of adding these new input points plus a
constant factor more Steiner points so that we recover a
bounded-ply mesh. After O(log n) rounds the process ter-
minates with a constant ply mesh of size O(n). This output
can then be finished to a standard good aspect ratio mesh
in output sensitive O(m) time if desired.

In this paper we only consider the case of point set in-
puts. We feel that the methods proposed should readily be
applicable to inputs with higher-dimensional features, such
as edges and faces, and with optimal runtime. But we leave
this discussion to the full paper.

2. BEATING THE SPREAD
The spread of a point set is the ratio of the largest to

smallest interpoint distances, and is denoted as ∆. It is
a (geo)metric rather than a combinatorial property; given
a set of points P , its cardinality may be n but its spread
is not in general bounded by any function of n. It is not
uncommon to see a dependence on the spread in the analysis
of algorithms in computational geometry and finite metric
spaces. Though rarely a problem in practice, it does thwart
the most basic principle in the analysis of algorithms, to
bound the complexity in terms of the input size.1

Consider two classic data structures, the quadtree and
the kd-tree. The quadtree partitions space geometrically,
breaking squares into 4 equally sized pieces. The kd-tree
partitions the input points combinatorially into sets of equal
cardinality. These data structures demonstrate the differ-
ence between geometric and combinatorial divide and con-
quer. The quadtree has depth log∆ whereas the kd-tree has
depth log n. Unfortunately, many computational problems
from nearest neighbor search to network design problems
depend on (geo)metric information that is lost when doing
a combinatorial divide and conquer. Thus, for many prob-
lems, the best known algorithms depend on the spread in
either time or space complexity or both.

One approach to dealing with the spread is to restrict the
computational model. If coordinates are restricted to be
log n-bit integers then the spread is O(n). If we use float-
ing point numbers, the spread is O(2n). These assumptions
about the bit representation of the input also allow for fast
computation of logarithms as well as the floor and ceiling
functions. These computations are usually omitted from
the basic operations of the real RAM model often used in
computational geometry to extend the comparison sorting
model from the real line to d-dimensional Euclidean space.
Har-Peled and Mendel correctly argue that if one can do
arithmetic in constant time, it is natural to expect also to
perform other operations of size O(log log∆) in constant

1One can get around this by making assumptions about the
bit representations of the inputs. We will address this as
well.

time [8]. This is certainly the case for many practical im-
plementations of geometric algorithms. However, it is in-
teresting, both in theory and in practice to explore ways of
eliminating the dependence on the spread without resorting
to specialized bit operations–in theory because it probes the
limits of an important computational model and in practice
because it allows one to work with a minimal set of prim-
itives with minimal assumptions about the low-level data
representation.2

In mesh generation, a dependence on the spread creeps
in from two different sources, in the output size and the in
the cost of point location. The previous state of the art
in comparison based point meshing requires O(n log∆+m)
work, where the first term is the cost of point location and
the second is the output sensitive term. Even for point set
inputs, the lower bounds on quality meshes imply that m
may also depend on the spread. Thus, to contest with the
spread, we must both optimize point location and also relax
the quality condition.

3. VORONOI REFINEMENT BASICS

Voronoi Diagrams.
The Voronoi diagram of a finite point set P in R

d, de-
noted VorP , is the polyhedral complex decomposing R

d into
regions based on the nearest neighbor among the points of
P . The regions are called Voronoi cells. Since some cells are
unbounded, we assume there is a suitably sized bounding
ball around the points of P and for a point p ∈ P we write
VorP (p) to denote the intersection of the Voronoi cell with
this ball.

The in-radius of VorP (p), denoted rp, is the radius of the
largest ball centered at p that is contained in VorP (p). The
out-radius, Rp is the radius of the smallest ball centered
at p that contains VorP (p). The aspect ratio of VorP (p) is
Rp

rp
. When viewed as cell complex, the vertices or 0-faces of

VorP (p) are called the corners, to avoid confusion with the
notion of a mesh vertex introduced later. The out-radius is
therefore, the distance from p to its farthest corner, while
the in-radius is the distance from p to its nearest facet. A set
of points is τ -well-spaced if every Voronoi cell has aspect
ratio at most τ .

The Voronoi diagram is the dual of the Delaunay trian-
gulation, which has a simplex for every subset of points on
the boundary of a ball that contains no other points of P .
For full-dimensional Delaunay simplices, these circumscrib-
ing balls are called D-balls. The corners of the Voronoi cells
correspond to D-balls3.

Voronoi Refinement.
The goal of Voronoi refinement is to produce a τ -well-

spaced set M by adding new vertices called Steiner points
to an input set P that is not well-spaced. We want to add
as few vertices as possible. The algorithm is simple: start-
ing with VorP , iteratively add the farthest corner of any cell
with aspect ratio greater than τ . It is perhaps more com-

2Recall that in the popular CGAL library, all primitives are
implemented for several different kernels, all use a small,
unified interface.
3We permit corners on the boundary to represent “degen-
erate” D-balls, ones corresponding to simplices that are not
full-dimensional.

monly known in its dual formulation, as Delaunay refine-
ment, where the goal is to improve the Delaunay simplices
rather than the Voronoi cells. But the resulting algorithms
and their analysis are nearly identical for both the primal
and the dual formulation.

It is not immediately obvious that Voronoi refinement
should ever terminate. Indeed, for some τ , it will run for-
ever. For a reasonable choice of τ , say τ = 3 for example,
not only will the algorithm terminate, it will do so with
asymptotically optimal size, both in the number of points
added and the total number of faces in the diagram. This
latter property results from the aspect ratio condition, and
is a major motivation for doing the refinement in the first
place.

Sparse Voronoi Refinement.
The first obstacle to producing a refined Voronoi diagram

in optimal time and space is that the input may have a
large Voronoi diagram, Ω(n⌈d/2⌉) faces in the worst case.
To overcome this obstacle, the Sparse Voronoi Refinement
(SVR) algorithm of Hudson et al. [10] interleaves the ad-
dition of input points to the diagram with the addition of
Steiner points. In doing so, the algorithm requires two extra
pieces. First, input points are only added if they are “close”
to the current Voronoi diagram. Second, the Steiner points
may not be added “too close” to uninserted input points.
The former notion of closeness is what we call ε-medial,
the ratio of the distances to the nearest and second nearest
points must be at most ε. The latter notion of closeness
causes the algorithm to yield by adding an input point p
rather than a Steiner point v if the distance from p to v is
less than γ times the radius of the empty ball around v.

By only inserting ε-medial points and yielding when ap-
propriate, Sparse Voronoi refinement maintains a good as-
pect ratio Voronoi diagram at every stage of the algorithm.
Consequently, the total work is output sensitive. This ap-
proach has also been generalized to more complex inputs
than just point sets, considering also piecewise linear com-
plexes [10].

Point Location, Point Location, Point Location.
The bottleneck for the running time of Voronoi refinement

is point location. Recall, that in the standard incremental
Voronoi (or Delaunay) algorithm, the first step to inserting
a new point is to find that point in the current diagram. A
natural and highly effective technique for doing this point
location is to eagerly store the uninserted points in the D-
balls of each Voronoi diagram as the algorithm progresses.
Points are moved whenever an insertion changes a D-ball
locally.

In SVR, this approach corresponds to a geometric divide
and conquer, similar to quadtrees, because after a constant
number of moves, the size of the balls containing any point
goes down by a constant factor. Thus, in SVR a single input
point may be moved Θ(log∆) times. In this work, we show
how to modify the algorithm so that only O(log n) moves
are necessary. One way to view these results is as a way to
achieve similar properties to compressed quadtrees without
leaving the comparison model or privileging any fixed set of
coordinate axes.

4. DEFINITIONS AND NOTATIONS

Points, Vectors, and Distances.
We will treat points of d-dimensional Euclidean space as

vectors in R
d. As such, we denote the euclidean distance

between two points x, y ∈ R
d as |x− y|. Moreover, we allow

the usual operations of scalar multiplication and addition on
points and also on sets of points. So, for example, if S is
the unit sphere centered at the origin, c is any point, and r
is a non-negative real number, then rS + c is the sphere of
radius r centered at c. We will also define the distance from
a point x to a set S as d(x, S) = infy∈S |x − y|. We write
ball(c, r) to denote the open ball of radius r centered at c
and conv(X) to denote the convex closure of X ⊂ R

d.

Domains.
A domain Ω ⊂ R

d is defined by a center cΩ, a radius rΩ,
and a collection of disjoint open balls B1, . . . , Bk ⊂ BΩ =
ball(cΩ, rΩ) such that

Ω = BΩ \

(

k
⋃

i=1

Bi

)

.

The ball BΩ is called the bounding ball of Ω and SΩ =
{x ∈ R

d : |x− cΩ| = rΩ} is the bounding sphere of Ω.

Figure 1: A domain hierarchy as a collection of sets
(left) and its tree structure (right).

We get a hierarchy of domains if the balls removed from
BΩ are the bounding balls of other domains. Formally, a
domain hierarchy is a tree H with disjoint domains as
nodes rooted at Ωroot such that

1. for any pair Ω,Ω′ ∈ H , p(Ω′) = Ω if and only if SΩ′ ⊂
Ω, and

2.
⋃

Ω∈H

Ω = BΩroot
.

Here, p(Ω) denotes the parent of Ω in H .

Cages.
Given a domain Ω, we want to add vertices near SΩ to

limit the interaction between the inside and the outside of
Ω. We will have two parameters, δ determining the density
of these points, and γ determining how nearly cospherical
they are. We call such a set CΩ of vertices a cage and we
require the following three properties, where r = (1−δ−γ)rΩ
and S = (1− δ − γ)SΩ.

1. [Nearness Property] For all v ∈ CΩ, d(v, S) ≤ γr.

2. [Covering Property] For all x ∈ S,
d(x,CΩ) ≤ (δ + γ)r.

3. [Packing Property] For all distinct u, v ∈ CΩ,
|u− v| ≥ (δ − 2γ)r.

To construct such a set of points, we start with a cage
template T of points on the unit sphere S. The points of
T are a metric space δ-net on S (not to be confused with
the range space nets used elsewhere in this paper). That
is, for all x ∈ S, d(x, T) ≤ δ and for each distinct pair
u, v ∈ T , |u− v| ≥ δ. Such sets are known to exist and can
be constructed using a simple greedy algorithm [7, 13].

For a domain Ω we construct its cage by adding for each
x ∈ cΩ + rT , a new point x′ such that |x − x′| ≤ γr. It
is easy to check that this set of points will satisfy the three
properties of a cage.

Definition 2. A cage CΩ centered at c with radius r is
ε-encroached or simply encroached by a point p /∈ CΩ if
either

1. p is an input point in annulus(c, εr, r), or
2. p is an input or Steiner point in annulus(c, r, 2r

ε
).

Roughly speaking, non-encroached cages have room on the
inside (w.r.t. input points) and room on the outside (w.r.t.
all mesh vertices).

Hierarchical Meshes.
A mesh is a set of points M and its Voronoi diagram.

The points of M are called the vertices of the mesh.

Definition 3. A hierarchical mesh is a mesh M along
with a domain hierarchy HM such that:

1. M has a vertex at the center of every domain, i.e.
cΩ ∈M for all Ω ∈ HM

2. No domain is ε-encroached.

Given a hierarchical mesh M and Ω ∈ HM , we define MΩ

to be the points of M contained in Ω plus the centers of the
children of Ω in HM . Formally,

MΩ = (M ∩ Ω) ∪
⋃

Ω′∈children(Ω)

{cΩ′}.

We call this the set M restricted to the domain Ω, and it is
well defined for any domain Ω and any set M that contains
the centers of the children of Ω. The set PΩ ⊂MΩ of input
points added to a domain is the subset of P ∩MΩ that were
inserted as inputs, as opposed to those added by yielding.
The one exception is that the center of Ω is always contained
in PΩ, even if it was inserted because of a yield.

In a hierarchical mesh, we can also define the Voronoi cell
of a cage CΩ as

VorM (CΩ) =
⋃

u∈M∩BΩ

VorM (u).

Definition 4. We say that a hierarchical mesh M is τ-
quality if the following conditions are met:

1. For every non-cage vertex v ∈M , VorM (v) has aspect
ratio at most τ .

2. For all Ω ∈ HM , VorM (CΩ) has aspect ratio at most
τ .

Figure 2: Quality cells of a vertex (left) and a cage
(right). The dotted circles indicate the in-radii and
out-radii

3. No domain in HM is ε-encroached.

The four constants γ, δ, ε, and τ are called the meshing
parameters. Throughout, they are assumed to be fixed
constants independent of the dimension.

Definition 5. For a set X and a domain Ω, the feature

size is a function fΩX : Rd → R that maps a point x to the
distance to its second nearest neighbor among the points of
XΩ and the bounding sphere of Ω.

We are mainly interested in the feature size of the input
and of the mesh, fΩP and fΩM respectively, over the domains
of MH . There is a natural relationship between the fea-
ture size and the in-radius of a Voronoi cell. For reasonable
choices of ε, a non-encroached cages CΩ′ centered at c has
an in-radius r such that r ≤ fΩM (c) ≤ 3r, Ω = p(Ω′).

5. THE ALGORITHM

5.1 Overview of the Algorithm
Like Sparse Voronoi Refinement, the core of the NetMesh

algorithm is an incremental construction of a Voronoi dia-
gram with the refinement steps to maintain mesh quality.
There are five main concerns. The algorithm must (1) or-
der the input points. These points are added one at a
time in an (2) incremental construction. After each in-
sertion, Steiner points are added in a (3) refinement phase
that recovers the quality invariant. All the while, uninserted
points are organized in a (4) point location data structure.
Once all of the inputs have been added, an optional (5) fin-
ishing procedure turns the linear-size hierarchical mesh into
a standard well-spaced mesh. Each of these concerns will be
addressed in more detail below, but first we will describe the
main ideas used and how they fit together.

Point Location. The point location data structure as-
sociates each point with each D-ball that contains it. So,
it is easy to report the set of D-balls containing an input
point and similarly, to report the set of points in a D-ball.
These associations are updated locally every time a new
point changes the underlying Delaunay triangulation. We
will prove that no point is ever in more than a constant
number of D-balls and thus the size of this structure will
not exceed O(n).

Incremental updates. In Sparse Voronoi Refinement,
every insertion is medial. This is critical to maintain qual-
ity in the mesh throughout the algorithm. In the NetMesh

algorithm, we change the domain hierarchy before inserting
each point to guarantee that it is medial in whatever domain
contains it. We show that this is sufficient to get the same
guarantees as in SVR. Thus, we can insert the points in any
order.

Ordering the input with ǫ-nets. The theory of range
space ǫ-nets is used to choose the input insertion order. One
round of the algorithm consists of generating an ǫ-net for the
current mesh by generating a union of ǫ-nets for the input
points of each D-ball, where the ranges are open balls. It is
known that each such net per D-ball has constant size, and
can be found in deterministic linear time [4]. The points
in any round may be inserted in any order, after which, the
next round is computed. In each round, the maximum num-
ber of points stored in any D-ball goes down by a constant
factor, so the total number of rounds is O(log n).

Refinement. The refinement, or cleaning phase of the
algorithm is a standard Voronoi refinement in that it adds
Steiner points at the farthest corner of any cell with bad
aspect ratio. As in SVR, if the Steiner point is sufficiently
close to an uninserted input point p, then p is added instead.
One slight change is that we maintain the aspect ratio of the
Voronoi cells of cages, but do not require the cage vertices
themselves to have good aspect ratio Voronoi cells.

Finishing the mesh. The algorithm produces a quality
hierarchical mesh of linear size. If one wants to extend this
mesh to a standard well-spaced mesh, it is a straightforward
procedure to do this in O(m) time, where m is the number of
vertices in an optimal-size, well-spaced superset of P . This
finishing process can run quickly because it need not do any
point location (all of the input points have already been
inserted).

5.2 Point Location Operations
Each uninserted input point stores a list of D-balls that

contain it as well as a list of cages that it encroaches. Simi-
larly, the D-balls have lists of uninserted vertices that they
contain. With each change in the Voronoi diagram, these
lists are updated. We say that the points are stored in the
balls to simplify the description of this list upkeep. A point
will generally be contained in several D-balls. The unin-
serted points are moved out of D-balls that have been de-
stroyed and into newly created D-balls. This shuffling of
points between D-balls is the work of point location. A
point is touched in this process if it is moved into a new ball
or even if it is considered for moving into a new ball. We
count the point location work from the perspective of the
uninserted input points.

There are four main point location operations needed.

1. Find the D-balls containing a point to insert it into the
Voronoi diagram.

2. Find the nearest and second nearest neighbor of a point
in its domain in order to compute its mediality.

3. Find any cages encroached by a given point.
4. Find a nearby input point to yield to, when inserting

a Steiner point.

The first operation is trivial.
For cage vertices v in a domain Ω, let center(v) be the

vertex at the center of Ω. Let B(x) be the set of D-balls
containing x. Let V (B) be the d + 1 vertices of the De-
launay simplex corresponding to the D-ball B. Let U(x) =
{V (B) : B ∈ B(x)}. If Ω is the domain containing x, then

the nearest and second nearest neighbors of x in MΩ are
in U(x) or {center(v) : v ∈ U(x)}, so it is easy to iden-
tify them. Call these vertices nx and sx respectively. Thus,

Mediality(x) = |x−nx|
|x−sx|

can be computed in timeO(|B(x)|).

To check encroachment of input points is easy because this
information is stored with the points. At the time a cage
is created, any encroaching input points must be relocated,
so the encroachment is discovered at that time. To check
encroachment of Steiner points, it suffices to observe that if
a Steiner point x encroaches a cage C, then some vertex of
c must appear in U(x). So, there are only O(|U(x)|) cages
to check and each check takes constant time.

To find a point to yield to, we simply need to check for in-
put points in a small empty ball around the proposed input
point. This is trivial for Steiner points added during refine-
ment because the Steiner point is the center of a D-ball B
and thus we only need to check Uninserted(B). For cage
vertices v, the search requires us also to check the points in
{Uninserted(B) : B ∈ B(v)}. In both cases, the points
checked in this process also need to be checked for reloca-
tion when the new vertex is inserted. Thus, the cost for this
search is dominated by the cost of relocating points, which
we analyze in detail later.

5.3 Incremental Updates to Hierarchical Meshes
The basic operation in incremental Voronoi diagrams is

Insert(v), which adds the vertex v to the Voronoi diagram
and updates the point location data structures. To keep this
operation constant time (not counting the cost of point loca-
tion), we must guarantee that |B(v)| is a constant because
every D-ball in B(v) is destroyed by the insertion. This
is done by making sure that every new insertion is medial.
Before the new point is inserted, we update the domain hi-
erarchy. If the point was not medial, then it must be signif-
icantly closer to its nearest neighbor than it second nearest
neighbor, and thus we add or expand cage around the near-
est neighbor. We must also update the domain hierarchy of
the new point encroaches on an existing cage.

Insert(x)
for each C in OutEncroach(x): ReleaseCage(C)
Add x to VorM and update the point location structure.

YieldingInsert(x)
let v be the nearest neighbor of x in the current mesh.
if there is an input point p in ball(x, γ|x− v|)

then Insert(p) else Insert(x)

There are three basic cage operations:

NewCage(p, r)
Initialize a new cage.
for each x ∈ T , YieldingInsert(rx+ p).

ReleaseCage(C)
for each cage vertex v in C push v to the RefineList.
Delete the cage C

GrowCage(C)
Let x be the center of C and let r be its radius.
if in-radius(Vor(C)) ≥ r

ε2
then NewCage(x, r

ε
).

ReleaseCage(C).

Equipped with the cage operations, we define the following
routine. Its purpose is to rearrange the domain hierarchy by
creating or growing new cages so that a new vertex v can be
added to a domain in which it is medial.

InsertInput(v)
let u be the nearest neighbor of v in MΩ

if Mediality(v) ≤ ε then NewCage(u, |u− p|/ε)
for each C in InEncroach(v): GrowCage(C)
Insert(v)

5.4 Refinement
The algorithm maintains a list of cells with bad aspect ra-

tio called RefineList. The cleaning procedure goes through
this list and refines these cells until none are left. The Re-

fineList is updated every time a Voronoi cell changes. The
structure of the Voronoi diagram makes it easy to check the
aspect ratio of a cell and Theorem 2 implies that this can
be done in constant time. If a cell’s aspect ratio was good
but goes bad, it is added to the list. If its aspect ratio was
bad but becomes good, it is removed from the list.

Clean(M : Mesh)
while RefineList is not empty

let v ∈ RefineList

let x be the far corner of Vor(v)
YieldingInsert(x)

5.5 Input Ordering with ǫ-Nets
We employ the theory of range space ǫ-nets to order the

inputs for insertion. The following is a special case of The-
orem 4.6 from [4] when the range space is defined by open
balls.

Theorem 1. Let P ⊂ R
d be a set of n points and let

ǫ ∈ (0, 1). There exists an algorithm Net(ǫ, P) that runs
in O(n) time and returns a subset N ⊆ P such that |N | =
O(1

ǫ
log 1

ǫ
) and any open ball that contains ǫn points of P

also contains a point of N .

Using the Net algorithm as a black box, we select the next
round of points to insert as follows.

SelectRound(M : mesh)
N ← ∅
for each B ∈ DBalls(M)

N ← N ∪Net(1
2d
,Uninserted(B))

return N

If the maximum number of uninserted points in a D-ball
of some mesh is k, then after adding the points chosen by
SelectRound, this maximum is at most k

2
. This follows

from the fact that every new D-ball is covered by at most d
of the old D-balls (see Theorem 3). So, the total number of
rounds is at most ⌈log n⌉. We can now give the main loop
of the algorithm.

NetMesh(P : points)
Initialize an empty mesh M
Uninserted← P

let c, r be such that P ∈ ball(c, r)
OuterCage = NewCage(c, r

ε
)

while Uninserted is not empty
V = SelectRound(M)
for each v ∈ V
InsertInput(v)
Clean(M)

return M

5.6 Finishing the Mesh
The output of NetMesh is a quality hierarchical mesh.

If the desired output is a well-spaced mesh according to the
traditional definition, i.e. quality with a single domain, then
some finishing procedure is required. Fortunately, it is trivial
given the cage operations defined above:

FinishMesh(M : Mesh)
while there exists a cage C other than OuterCage

GrowCage(C)
Clean(M)

Since the cages are not encroached, they have some space
around them. The FinishMesh procedure simply grows the
cages until this space is filled. No new cages are formed and
no point location work on input points is required.

Note that finishing the hierarchical mesh in this way may
result in a mesh with more than a linear number of points
because well-spaced meshes are subject to potentially super-
linear (or even superpolynomial!) lowerbounds. This is why
we consider the finishing operation to be optional.

6. OVERVIEW OF THE ANALYSIS
An intermediate mesh, Mi, is the mesh after i vertices or

cages have been inserted in during the incremental construc-
tion. To analyze theNetMesh algorithm, we will prove that
two invariants are maintained for each intermediate mesh:
the feature size invariant and the quality invariant.

Definition 6. A hierarchical mesh M satisfies the qual-

ity invariant if each intermediate mesh Mi is τ
′-quality for

some constant τ ′ depending only on the meshing parameters.

Definition 7. A hierarchical mesh M of an input set P
satisfies the feature size invariant if for all domains Ω ∈
HM and all vertices v ∈MΩ

fΩP (v) ≤ KfΩ
M (v),

where K is a constant that depend only on the mesh param-
eters.

The quality invariant is useful because of several proper-
ties of quality meshes.

Theorem 2. If M is a τ -quality mesh, then

1. no point of Rd is contained in more than O(1) D-balls,
2. no D-ball intersects more than O(1) other D-balls, and
3. no vertex of M has more than O(1) Delaunay neigh-

bors.

These structural results about quality meshes are known for
the case of a single domain [15, 10]. To extend them to
the case of a quality hierarchical meshes follows the same

methods as in previous work. Detailed proofs may be
found in the full paper.

Over a single domain, standard results in mesh size anal-
ysis imply that the feature size invariant suffices to prove
that the number of vertices is bounded (up to constants) by
the feature size integral [17]:

∫

Ω

dx

fΩP (x)d
.

In previous work [14], we showed that the feature size inte-
gral is O(n) when the input points satisfy a certain spacing
condition. We prove that in each domain Ω of the hierarchy,
the points of PΩ satisfy this spacing condition (Lemma 7),
allowing us to prove that the total output size is O(n) (The-
orem 8).

Theorem 2 and the quality invariant imply that the cost to
update the Voronoi diagram for a single insertion is constant.
That is, the number of combinatorial changes to the Voronoi
diagram is constant for each each insertion. Thus, since the
total number of points added is O(n), the total work is O(n),
not counting the cost of point location.

To bound the cost of point location, we first show that at
most a constant number of vertices are added to any D-ball
in the course of a round (Lemma 12). This is then used to
show that the total amount of point location work is O(n)
per round. Since there are only O(log n) rounds, the total
work is O(n log n) as desired.

7. RANGE SPACES ANDǫ-NETS
In this section we discuss ideas and definitions from hyper-

graph and range space theory that we will need in our mesh-
ing algorithm. We will also give a distance measure derived
from a range space that is useful for our analysis. A range
space or hypergraph is a pair (X,R) where X is a set
and R is a collection of sets called ranges. A range space
ǫ-net for (X,R) is a subset N of X such that N ∩ R 6= ∅
for all R ∈ R such that |R ∩X| ≥ ǫ|X|.

Throughout this discussion the ranges will be open balls
in R

d including those with infinite radius, i.e. halfspaces.
For a subset M ⊂ R

d, define:

BM = {B : B is a ball and B ∩M = ∅}.

A useful subset of BM is the set of D-balls of M :

DM = {B ∈ BM : B is a D-ball of M}.

The following geometric lemma is useful for translating
between statements about D-balls and statements about ar-
bitrary empty balls in the space.

Theorem 3. If M ⊂ R
d and B ∈ BM then B ∩ conv(M)

is covered by at most d D-balls of DM and these d balls all
share a common point.

The proof appears in the full version.
Let GBM

be the graph with vertex set BM and edges for
each pair of balls that intersect. For any x, y ∈ Rd \M , let
dBM

(x, y) be the length of the shortest path in GBM
between

a ball containing x to a ball containing y. Define GDM
and

dDM
similarly. These distances are related by the following

lemma.

Lemma 4. IfM ⊂ R
d is finite then dDM

(x, y) ≤ 2dBM
(x, y)

for all x, y ∈ conv(M).

Proof. Fix a pair of points x, y ∈ conv(M) and let s =
dBM

(x, y). It will suffice to find D-balls E1, . . . , E2s ∈ DM

such that x ∈ E1, y ∈ E2s, and each Ei ∩Ei+1 is nonempty.
By the definition of dBM

, there exists balls B1, . . . , Bs ∈ BM
such that x ∈ B1, y ∈ Bs, and each Bi ∩Bi+1 is nonempty.
Let zi be a point in Bi ∩Bi+1 for i = 1 . . . s− 1 and define
z0 := x and zs := y. Now, by Theorem 3, there are d D-balls
covering each Bi and they all have a common intersection.
So, letting E2i−1 and E2i be the D-balls among these that
contain zi−1 and zi gives the desired path of length at most
2s in GDM

.

8. SIZE BOUNDS
In this section we will show that the output of NetMesh

has linear size. The analysis will follow a straightforward
strategy. We will argue that the algorithm never inserts a
vertex too close to an existing vertex. This is known as
the insertion radius invariant, and it allows us to prove
that the feature size invariant holds for all intermediate
meshes. We use this to prove that for all domains Ω, MΩ

has size linear in |PΩ| from which the overall bound follows.
This strategy is not new; it parallels closely the approach of
Ruppert [17] for Delaunay refinement and its sparse version
introduced by Hudson, Miller, and Phillips [10]. We have
adapted it to the case of hierarchical meshes.

We say that a hierarchical mesh M is constructed incre-
mentally if the vertices are added one at a time and the
domains are adjusted before every insertion so that no do-
main is encroached. In particular, the algorithm given is
such an incremental construction. The intermediate mesh
after i points and cages have been added is denoted by Mi,
its domain hierarchy HMi

is denoted Hi, and Pi = P ∩Mi

is the set of inputs inserted thus far. Define the insertion
radius of the ith vertex added v as λv = fΩMi

(v), where
Ω ∈ Hi is the domain into which v was inserted.

Definition 8. A hierarchical mesh M of an input set P
constructed incrementally satisfies the insertion radius in-

variant if for all domains Ω ∈ Hi for all i and all vertices
v ∈MiΩ

fΩPi
(v) ≤







K′
Cλv if v is inserted as a cage vertex,

K′
Sλv if v is inserted as a circumcenter, and

K′
Iλv if v is inserted as an input vertex

where K′
C ,K

′
S, and K′

I are constants that depend only on
the mesh parameters.

The following lemma states that as long as the insertion
radius of every vertex is not too small then the distance
to its nearest neighbor is also not too small. Its proof is
straightforward and reserved for the full paper.

Lemma 5. If M is a hierarchical mesh constructed incre-
mentally that satisfies the insertion radius invariant, then
M also satisfies the feature size invariant.

Lemma 5 implies that in order to prove that the spacing
of the points in the final mesh is good, it will suffice to show
that the algorithm maintains the insertion radius invariant
throughout. This is proven in the following lemma.

Lemma 6. The hierarchical mesh M constructed by the
NetMesh algorithm satisfies the insertion radius invariant.

Proof. We proceed by induction on the total number of
vertices added. Let v be the ith vertex added and let Ω be
the domain it is inserted into.
Case 1: v is a cage vertex. Since PΩ contains at least the
center of Ω, the feature size is bounded as fΩP (v) ≤ rΩ. By
construction, adjacent cage vertices are at least αrΩ apart,
where α = (δ − 2γ)(1 − δ − γ). So, λv ≥ αrΩ. Combining
these two facts and choosing K′

C ≥
1+ε
α

yields fΩPi
(v) ≤

K′
Cλv as desired.

Case 2: v is a clean move. Steiner points are added when
some vertex (or cage) u ∈ Mi−1Ω has aspect ratio greater
than τ . Let Vu denote this poor aspect ratio cell. Let w
be the nearest neighbor of u in MΩ, so fΩM (u) = |u − w|.
In case we yielded in order to insert v, let v′ be the true
circumcenter that we tried to insert. The yielding condition
guarantees that

|v − v′| ≤ γ|u− v′|. (1)

Since u or w or both can be the center of a child domain of Ω,
we need to also consider vertices u′, w′ of M that define the
insertion radius of v and the in-radius of Vu respectively.
Since w does not encroach a domain at u and |u − w| ≤
|u− v′|, it follows that

|u− u′| ≤ ε|u− v′|. (2)

The D-ball centered at v′ has radius |u′ − v′| and is empty
of vertices, so λv ≥ |u

′ − v′| − |v − v′|. Using the triangle
inequality, (1), and (2), we can bound the insertion radius
as follows.

|u− v′| ≤ βλv. (3)

where, β = 1
1−ε−γ

. Since w is closer to u than v, fΩMi−1
(u) =

fΩMi
(u) and fΩPi−1

(u) = fΩPi
(u). So, we can use induction and

Lemma 5 to get that

fΩPi
(u) ≤ K′

I |u− w|. (4)

We use K′
I because it is the largest of the K′ constants.

We may now derive a bound on fΩPi
(v) as follows.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ fΩPi
(u) + |u− v′|+ |v′ − v| [triangle inequality]

≤ fΩPi
(u) + (1 + γ)|u− v′| [by (1)]

≤ K′
I |u− w|+ (1 + γ)|u− v′| [by (4)]

≤

(

3K′
I

τ
+ 1 + γ

)

|u− v′| [Vu aspect ratio > τ]

≤

(

3K′
I

τ
+ 1 + γ

)

βλv [by (3)]

So, settingK′
S ≥

(

3K′

I

τ
+ 1 + γ

)

β yields the desired bound.

Case 3: v is an input. Choose u such that λv = |u − v|
and let j and Ωj be the time that u was inserted and the
domain it was inserted into respectively. If u ∈ CΩ, then v
encroaches on Ω, which is impossible. If u is an input vertex
then λv = fΩ

P (v) so we are done. So, we may assume that
u is a Steiner point, inserted either as either a circumcenter
or as a cage vertex that was later released.

The feature size of a point in the domain that contains it
cannot go down in the course of the algorithm, because the
mesh in each domain only gets larger. Thus, for example

fΩPi
(u) ≤ f

Ωj

Pj
(u). (5)

We define K′
u = K′

S in the former case and K′
u = K′

C in

the latter. By choosing K′
I ≥

K′

u

γ
+ 1, we can now derive

the following bound.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ f
Ωj

Pj
(u) + |u− v| [by (5)]

≤ K′
uλu + |u− v| [by induction]

≤

(

K′
u

γ
+ 1

)

|u− v| [because u did not yield to v]

≤ K′
I |u− v|

[

K′
u

γ
+ 1 ≤ K

]

= K′
Iλv. [λv = |u− v|]

Lemma 7. Let q and q′ be any two input points and let
r be the distance between them. If A = annulus(q, 2r, 6r

ε3
)

contains no input points, then q and q′ are inside some cage
contained in A for all intermediate meshes after each has
been inserted.

Proof Sketch. Let p1, . . . , pk be all input points in ball(p, 2r)
ordered by the order in which they were inserted. Clearly
q and q′ are among the pi’s. The proof is a straightforward
induction on k, requiring us only to show that each inser-
tion leaves the desired cage around the previous set. The
constant 6

ε3
was carefully chosen to make this work. The

details may be found in the full paper.

We can now prove that the output mesh has size linear in
the input size.

Theorem 8. If M is the output of the NetMesh algo-
rithm for an input set P , then |M | = O(|P |).

Proof Sketch. Let Ω be any domain in the output. Let
p1 . . . , pj be the vertices of PΩ ordered such that for each i =
3 . . . j, fPΩ

i
(pi)/fPΩ

i−1

(pi) ≥
12
ε3

+ 1, where Pi = {p1, . . . , pi}.

Lemma 7 guarantees that such an ordering can be found by
a trivial greedy algorithm (see the full paper for details of
the construction).

In previous work [14], we showed if PΩ can be ordered
this way then any well-spaced superset satisfying the bound
in Lemma 6 has size O(|PΩ|). So, in particular |MΩ| =
O(|PΩ|). Now, we observe that because every domain con-
tains at least 2 input points,

∑

Ω |PΩ| < 2|P |. So, the total
mesh size can be bounded as |M | ≤

∑

Ω |MΩ| = O(
∑

Ω |PΩ|) =
O(|P |).

9. QUALITY AND PLY

Theorem 9. For any input, the intermediate meshes of
the NetMesh algorithm are τ ′′-quality, where τ ′′ depends
only on the mesh parameters.

We give only a sketch of the main ideas of the proof here
and refer the reader to the full paper for details. The proof
is based directly on the proof from [10] that SVR maintains
a quality mesh throughout. We have only a few extra cases
because of the extra work involved in creating and releasing
cages. The key lemma is as follows.

Lemma 10. Let M be a τ -quality hierarchical mesh and
let Ω be any domain in HM . If B is a ball of radius r centered
in BΩ empty of points in M and x ∈ B, then

fΩM (x) ≥ c10r,

where c10 =
1

24τ2

It guarantees that as long as there is a large empty ball
nearby, the feature size function cannot be too small. The
corresponding lemma from [10] is Lemma 6.1 and again,
the same proof carries over easily to hierarchical meshes.
Lemma 10 is also critical in the proof of Theorem 2, which
guarantees that quality meshes have constant ply (the de-
tails of which can also be found in the full version).

10. POINT LOCATION ANALYSIS

Definition 9. A vertex v ∈ M touches an uninserted
point u ∈ P \M if when v was inserted into M there were
intersecting D-balls Bu and Bv containing u and v respec-
tively.

The quality invariant and Theorem 2 guarantee that only
a constant number of balls are created or destroyed during
an insertion, so the total amount of point location work done
on any input point is O(t), where t is the number of times
it was touched.

Theorem 11. The total cost of point location in the
NetMesh algorithm is O(n log n).

Proof. As noted before, it suffices to count the number
of touches on uninserted input points throughout the algo-
rithm. Since there are only O(log n) rounds, it will suffice
to show that no input point can be touched more than a
constant number of times in a single round.

Let M be the mesh at the start of a round. Consider
any point p ∈ P . We will show that p cannot be touched
more than a constant number of times in this round. By
definition, a point x touches p if dD

M′
(p, x) ≤ 1 in the mesh

M ′ just prior to inserting x. So, it follows that dBM
(p, x) ≤

1 because D-balls inM ′ are empty of points ofM . Moreover,
by Lemma 4, dDM

(p, x) ≤ 2. Therefore, the set of points
that can touch p this round are all contained in one of the
constant number of D-balls that are within 2 hops of p in
GDM

. In Lemma 12 below, we show that only a constant
number of points are added to any D-ball in a single round.
Thus, the total number of points that can touch p in a round
is at most a constant.

Lemma 12. In any round starting with a mesh M , at
most a constant number of points are added to any D-ball
of M .

Proof. Fix a particular round and let B be a D-ball of
M . Let P ′ denote the input points inserted this round. Let
Q ⊆ P ′ be the points q ∈ P ′ such that dBM

(q, x) ≤ 5
for some x ∈ B. It is easily checked that Theorem 2 and
Lemma 4 implies that |Q| = O(1).

Let M ′ denote the mesh at the end of the round. We
wish to upper bound the number of points of M ′ in B. By
standard mesh size analysis,

|M ′ ∩B| =
∑

Ω∈HM′

O

(∫

BΩ∩B

dx

fΩP ′∪M (x)d

)

. (6)

Now, we observe that for some constant α, the points of
P ′ ∩M ′

Ω are α-well-paced with respect to MΩ. This means
that they may be ordered so p1, . . . , pk, so that f

Ω
P ′

i−1
∪M (pi) ≤

αfΩP ′

i
∪M (pi) for each i = 1 . . . k, where P ′

i = {p1, . . . , pi}. As

shown in [14], this implies that there is a constant β, de-
pending only on α and d, such that for all i,

∫

Rd





1

fΩ
P ′

i
∪M

(x)d
−

1

fΩ
P ′

i−1
∪M

(x)d



 dx ≤ β. (7)

If pi /∈ Q then fΩP ′

i
∪M(x) = fΩP ′

i−1
∪M (x) for all x ∈ BΩ ∩B

(see Lemma 13 below). So, writing the integral from (6) as
a telescoping sum in terms of (7) as

∫

BΩ∩B

dx

fΩP ′∪M (x)d
=

∫

BΩ∩B

dx

fΩM (x)d
+

k
∑

i=1





∫

BΩ∩B

1

fΩ
P ′

i
∪M

(x)d
−

1

fΩ
P ′

i−1
∪M

(x)d



 dx

results in at most |Q| nonzero terms in the sum on the right.
So, by (7) and (6),

|M ′ ∩B| =
∑

Ω∈HM′

O

(

β|Q|+

∫

BΩ∩B

dx

fΩM (x)d

)

. (8)

Moreover, the number of domains in HM′ that intersect B
is only a constant (see Lemma 14). For each domain Ω inter-
secting B,

∫

BΩ∩B
dx

fΩ
M

(x)d
= O(1) (see Lemma 15). Applying

this fact to (8), implies |M ′ ∩B| = O(1) as desired.

Lemma 13. Let M be a mesh. For all Ω ∈ HM and all
x, y ∈ Ω \M , if dBM

(x, y) > 5 then fΩM (x) = fΩM∪{y}(x).

Proof. Fix a domain Ω. We will prove the contraposi-
tive. Suppose fΩM (x) 6= fΩM∪{y}(x) for some x, y ∈ Ω. Then,
B = ball(x, |x−y|) contains at most one point z of MΩ. Let
Bx be the largest ball centered at x that contains no point
of M . Let By be the largest ball interior tangent to B at y
that contains no point of M . If Bx and By intersect then we
are done. Otherwise, the two balls must be obstructed by a
cage around z. It is any easy exercise to show that any two
points outer encroaching a cage have ball-distance at most 3
for ε < 1

3
. So, the total ball-distance from x to y is at most

5.

Lemma 14. Let M and M ′ be the meshes before and after
a round of the NetMesh algorithm. For any D-ball B in
M ′, at most a constant number of domains of HM′ intersect
B.

Proof. Let x be the center of B. There are only a con-
stant number of domains ofHM intersecting B, because each
contains a D-ball intersectingB and Theorem 2 implies there
can only be a constant number of such balls. Any newly cre-
ated domains must have been caused by the insertion of an
input point y ∈ M ′ \M . However, if the new domain in-
tersects B then either y caused a cage from M to grow or
dBM

(x, y) ≤ 5. In either case, there are only a constant
number of new domains intersecting B.

Lemma 15. Let M and M ′ be the meshes before and after
a round of the NetMesh algorithm. If B is a D-ball of M ,
then for all Ω ∈ HM′ ,

∫

BΩ∩B

dx

fΩM (x)d
= O(1).

Proof. There are four types of domains to consider: the
smallest domain Ω such that B ⊂ BΩ, domains Ω such that
|MΩ| = 0, domains Ω such that |MΩ| = 1, and domains Ω
such that MΩ contains an entire cage CΩ′ of some domain
Ω′ ∈ HM . In the first case, the result follows easily from
Lemma 10. In the second case, fΩM =∞, and thus, the inte-
gral evaluates to 0. In the third case, it is easy to evaluate
the integral directly using polar coordinates to find that it
is constant.

The last case is the interesting one. We use the coarse
bounds that fΩM (x) ≥ δrΩ′ for (1−δ−γ)rΩ′ ≤ |x−cΩ| ≤ 2rΩ′

and fΩM (x) ≥ 1
2
|x− cΩ| for |x− cΩ| > 2rΩ′ . Integrating with

polar coordinates centered at cΩ yields an answer O(log rΩ
r
Ω′

).

Only a constant number of points in a round may cause Ω′

to grow because all but one must lie in the Voronoi cell of
CΩ and thus they are all within a constant D-ball distance
of one another. So, rΩ

r
Ω′

= O(1) and thus the integral also

evaluates to O(1).

11. CONCLUSION AND FUTURE WORK
In this paper, we have given an algorithm for generating

quality hierarchical meshes of point sets with size O(n) in
O(n log n) time. We also showed how to extend these hierar-
chical meshes to traditional well-spaced meshes in optimal
output-sensitive time O(n log n + m). The algorithm and
its analysis introduce novel uses of ǫ-nets and the linear-size
meshing theory introduced in [14].

Future Work.
We have restricted our discussion to the rarefied case of

point set inputs. We expect it should now be possible to
design a work efficient algorithm for inputs with higher di-
mensional features such as segments and faces. The algo-
rithm presented is basically a work efficient parallel algo-
rithm. It should be possible to show the present algorithm
runs in polylog parallel time with no increase in work and
thus beating the time and work bounds in parallel SVR [12].

Yet another issue is integrating ideas from the NetMesh

algorithm into the already relatively fast SVR code [1]. Fu-
ture experiments in this direction are in order. The algo-
rithm removes the spread term in the run time for the mesh
based persistent homology algorithms [11]. It may also have
applications for efficient surface reconstruction especially in
the higher dimensional cases[6].

12. REFERENCES
[1] U. A. Acar, B. Hudson, G. L. Miller, and T. Phillips.

SVR: Practical engineering of a fast 3D meshing
algorithm. In Proc. 16th International Meshing
Roundtable, pages 45–62, 2007.

[2] M. Bern, D. Eppstein, and J. R. Gilbert. Provably
Good Mesh Generation. Journal of Computer and
System Sciences, 48(3):384–409, June 1994.

[3] M. W. Bern, D. Eppstein, and S.-H. Teng. Parallel
construction of quadtrees and quality triangulations.
International Journal of Computational Geometry and
Applications, 9(6):517–532, 1999.

[4] B. Chazelle. The Discrepancy Method. Cambridge
University Press, 2000.

[5] K. L. Clarkson. A Randomized Algorithm for
Closest-Point Queries. SIAM Journal on Computing,
17(4):830–847, Aug. 1988.

[6] T. K. Dey. Curve and Surface Reconstruction :
Algorithms with Mathematical Analysis. Cambridge
University Press, 2007.

[7] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci.,
38:293–306, 1985.

[8] S. Har-Peled and M. Mendel. Fast construction of nets
in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[9] S. Har-Peled and A. Üngör. A Time-Optimal
Delaunay Refinement Algorithm in Two Dimensions.
In Symposium on Computational Geometry, 2005.

[10] B. Hudson, G. Miller, and T. Phillips. Sparse Voronoi
Refinement. In Proceedings of the 15th International
Meshing Roundtable, pages 339–356, Birmingham,
Alabama, 2006. Long version available as Carnegie
Mellon University Technical Report CMU-CS-06-132.

[11] B. Hudson, G. L. Miller, S. Y. Oudot, and D. R.
Sheehy. Topological inference via meshing. In
Symposium on Computational Geometry, 2010.

[12] B. Hudson, G. L. Miller, and T. Phillips. Sparse
Parallel Delaunay Refinement. In 19th Annual ACM
Symposium on Parallelism in Algorithms and
Architectures, pages 339–347, San Diego, June 2007.

[13] J. Matoušek. Lectures on Discrete Geometry.
Springer-Verlag, 2002.

[14] G. L. Miller, T. Phillips, and D. R. Sheehy. Linear-size
meshes. In CCCG: Canadian Conference in
Computational Geometry, 2008.

[15] G. L. Miller, D. Talmor, S.-H. Teng, and
N. Walkington. On the radius-edge condition in the
control volume method. SIAM J. on Numerical
Analysis, 36(6):1690–1708, 1999.

[16] S. A. Mitchell and S. A. Vavasis. Quality mesh
generation in higher dimensions. SIAM J. Comput.,
29(4):1334–1370 (electronic), 2000.

[17] J. Ruppert. A Delaunay refinement algorithm for
quality 2-dimensional mesh generation. J. Algorithms,
18(3):548–585, 1995. Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA) (Austin,
TX, 1993).

[18] A. C.-C. Yao. A lower bound to finding convex hulls.
J. ACM, 28:780–787, October 1981.

