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A Multicover Nerve for Geometric Inference

Donald R. Sheehy

Abstract

We show that filtering the barycentric decomposition of
a Čech complex by the cardinality of the vertices cap-
tures precisely the topology of k-covered regions among
a collection of balls for all values of k. Moreover, we
relate this result to the Vietoris-Rips complex to get an
approximation in terms of the persistent homology.

1 Introduction

Computational geometers use topology to certify cor-
rectness of geometric constructions and inferences. For
example, in surface reconstruction one often wants a
homeomorphic reconstruction [8] or in medial axis ap-
proximation, one might seek a homotopy equivalence
between the approximation and the true medial axis[4].
In some sensor network problems, topological guaran-
tees can certify that the network covers a geometric do-
main [7]. A growing literature deals explicitly with the
inference of topological structure in data sets (see Carls-
son [1] for a survey).
Many of these examples depend on the Nerve The-

orem or variations thereof to extract topological infor-
mation from geometry. This classic result in algebraic
topology relates the topology of a union of sets to that
of a simplicial complex called the nerve (under certain
conditions on the intersections of the sets).
In this paper, we extend the Nerve Theorem to con-

sider regions covered by at least k different sets. In the
language of sensor networks, this new nerve captures
the notion of k-coverage. Whereas the Nerve Theorem
can be applied directly for any fixed k, there is little
correspondence between the nerves computed for differ-
ent values of k. We show that a natural filtration of the
barycentric decomposition of the nerve can capture this
information for all values of k.
Noise and outliers are a major problem in topologi-

cal data analysis. Even a single outlier can appear as a
significant topological feature using standard methods.
By considering k-covered regions only, our filtration ig-
nores up to k points locally. This is closely related to
a common approach to de-noising data for topological
data analysis points are treated as noise if the distance
to their kth nearest neighbor is at least some thresh-
old α (see [11] and [2] for two notable examples). Our
method has the added advantage that it is easy to relate
results for different choices of k.

We prove our results in the setting of persistent ho-
mology. This allows us to relate the main result also to
sets in general metric spaces where it may be difficult
to compute k-wise intersections directly.
The specific case we are interested is the (k, α)-offsets

of a point set P ⊂ R
d, defined as the α-sublevel set

of the kth nearest neighbor distance function. Equiva-
lently, this is the subset of Rd covered by at least k balls
of radius α centered at points in P (see Figure 1).

Figure 1: The α-offsets overlaid with the (2, α)-offsets
from growing values of α.

2 Background

Topology. We will assume a basic knowledge of
standard definitions in topology including topological
spaces, homotopy equivalence, and homology. The book
by Munkres [10] is a good source for all the necessary
background.

Simplicial Complexes. A simplicial complex S is
family of subsets of a vertex set V (S) that is closed
under taking subsets. That is, if σ′ ⊂ σ ∈ S then
σ′ ∈ S. The elements of a simplicial complex are called
simplices and the elements of the simplices are called
vertices. The dimension of a simplex σ is defined
as |σ| − 1. In this paper, we deal purely with abstract
simplicial complexes and do not make any assumptions
about how they are embedded.
Given a subset U of the vertices of S, the induced

subcomplex of S on the vertex set U is the set of
simplices whose vertices are all in U .

Filtrations. A filtration is a nested sequence of topo-
logical spaces. In this paper, we deal primarily with
filtrations parameterized by the nonnegative real num-
bers. So, a filtration G = {Gα}α≥0 is a family of spaces
such that Gα ⊆ Gβ whenever 0 ≤ α ≤ β. For brevity,
we omit the parameter set and write G = {Gα} when
it is obvious that α ranges over R≥0. If the spaces in a
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filtration are all simplicial complexes then we call it a
filtered simplicial complex. Throughout the paper,
superscripts are always used to index into a filtration.

Persistent Homology and Persistence Diagrams The
theory of persistent homology describes the way the
topology of the spaces in a filtration change as α ranges
over R≥0. Given a filtered simplicial complex, there is
an efficient algorithm for computing its so-called persis-
tence diagram [13]. This diagram is a multiset of points
in the extended plane (R∪{∞})2 where every point rep-
resents a topological feature. The x and y coordinates
of a point in the persistence diagram represent the val-
ues of α for which that particular feature appeared and
disappeared respectively in the filtration. For example,
a cycle may form at α = x and then be filled in (killed)
by triangles at α = y. These are sometimes called the
birth and death times of the feature.

By convention the diagonal x = y is included in every
persistence diagram. The distance from this diagonal is
a measure of how long a feature persisted before being
killed.

It is beyond the scope of this paper to give a full treat-
ment of persistent homology; the book by Edelsbrunner
and Harer gives a complete background[9].

From Sets to Filtrations. Persistent homology ex-
tends homology theory from spaces to filtrations. Be-
low, we present some basic definitions and known results
about persistence with an emphasis on the generaliza-
tion of results from spaces to filtrations. Often, this
means we will overload notation so that the same nota-
tions apply to both spaces and filtrations.

First we define the basic set operations on filtrations,
defining {Fα}∪{Gα} = {Fα∪Gα} and {Fα}∩{Gα} =
{Fα ∩ Gα}. For any collection T of sets (or filtra-
tions), we use the shorthand notation

⋃

T =
⋃

S∈T S
and

⋂

T =
⋂

S∈T S.

The first task is to extend a notion of topological
equivalence from spaces to filtrations. Since the per-
sistence diagram is a complete invariant of the filtra-
tion so filtrations F and G have isomorphic persis-
tent homology if Dgm F = Dgm G. Unfortunately, to
prove Dgm F = Dgm G, it does not suffice to have
H∗(F

α) ∼= H∗(G
α) or even Fα ≃ Gα. The following

lemma gives a sufficient condition. It is a special case
of the persistence equivalence theorem [9, page 159]

Lemma 1 Let F = {Fα} and G = {Gα} be filtra-

tions. If for all 0 ≤ α ≤ β, there are isomorphisms

H∗(F
α) → H∗(G

α) and H∗(F
β) → H∗(G

β) that com-

mute with the homomorphisms H∗(F
α) → H∗(F

β) and

H∗(G
α) → H∗(G

β) induced by inclusion, then DgmF =
Dgm G.

Simplicial Maps. Let S and T be simplicial complexes.
A map f : S → T is a simplicial map if f maps ver-
tices to vertices and for every σ ∈ S, f(σ) ∈ T . A
simplicial map is defined entirely by how it maps ver-
tices to vertices. A simplicial map that is both injective
and surjective is an isomorphism of simplicial com-
plexes. We say that F = {Fα} and G = {Gα} are
isomorphic filtered simplicial complexes if there
exists a family of isomorphisms φα : Fα → Gα such
that for all 0 ≤ α ≤ β, φα is the restriction of φβ to
Fα, denoted φα = φβ |Fα . The following Lemma follows
directly from the definition of isomorphic filtrations and
Lemma 1.

Lemma 2 If F and G are isomorphic filtered simplicial

complexes then DgmF = Dgm G.
When S ⊂ T , a map f : S → T is a retraction

if f(σ) = σ for all σ ∈ S. A pair of simplicial maps
f, g : S → T are contiguous if f(σ) ∪ g(σ) ∈ T for
all σ ∈ S. The theory of contiguity is a simplicial ana-
logue of homotopy theory. The following lemma gives a
homology analogue of a deformation retraction.

Lemma 3 Let X and Y be simplicial complexes such

that X ⊆ Y and let i : X →֒ Y be the canonical inclusion

map. If there exists a simplicial retraction π : Y → X
such that i ◦ π and idY are contiguous, then i induces
an isomorphism i⋆ : H∗(X) → H∗(Y ) between the cor-

responding homology groups.

Barycentric Decomposition. Let S be a simplicial
complex. A flag in S is an ordered subset of sim-
plices {σ1, . . . , σt} ⊆ S such that σ1 ⊂ · · · ⊂ σt.
The barycentric decomposition of S is the simpli-
cial complex formed by the set of flags of S:

Bary S := {U ⊂ S : U is a flag of S}.
We also define the barycentric decomposition of a fil-
tered simplicial complex {Sα} to be the filtered simpli-
cial complex Bary {Sα} := {Bary Sα}.
There is a natural filtration on a barycentric decom-

position induced by considering only the flags of some
minimum cardinality. We define the complexes in this
filtration as

k-Bary S := {γ ∈ Bary S : min
σ∈γ

|σ| ≥ k}.

As before, this definition is extended to filtered com-
plexes {Sα} as k-Bary {Sα} := {k-Bary Sα}.
The operation of taking barycentric decompositions

does not change the underlying topology. This fact is
expressed in the following lemma, whose proof is trivial
and omitted.

Lemma 4 If S is a filtered simplicial complex then

Dgm S = Dgm (Bary S)
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Note that this lemma is not true if we replace Bary with
k-Bary .

Nerves. Let F = {{Fα
1 }, . . . , {Fα

n }} be a collection
of filtrations. Define Fα to be the collection of sets
{Fα

1 , . . . , F
α
n }.

We say that Fα is a good open cover of
⋃Fα if all

Fα
i and their intersections are empty or contractible.

This condition is easily satisfied if the Fα
i are open con-

vex sets. We say that F is a good filtered cover if
Fα is a good open cover for all α ≥ 0.
The nerve of a collection of sets Fα is the abstract

simplicial complex Nerve Fα := {U ⊆ Fα :
⋂

U 6= ∅}.
The nerve of a collection of filtrations F is the filtered
simplicial complex NerveF := {NerveFα}α≥0.
The following is a classic result in algebraic topology

called the nerve theorem.

Theorem 5 (The Nerve Theorem) If Fα is a good

open cover then

⋃

Fα ≃ NerveFα.

The extension of the nerve theorem to the persis-
tence setting follows from the Persistent Nerve Lemma
of Chazal and Oudot [5] and Lemma 1:

Theorem 6 (Persistent Nerves) If F is a good fil-

tered cover then

Dgm
{

⋃

Fα

}

= Dgm (Nerve F).

k-Covers. Given a collection F of sets (or filtrations),
the k-Cover of the collection is the set of k-wise inter-
sections:

k-CoverF :=
{

⋂

U
}

U∈(Fk)
.

The k-cover of a collection of sets is a new collection of
sets. The k-cover of a collection of filtrations is a new
collection of filtrations.

3 Barycentric Bifiltration

The Barycentric Čech Filtration. Consider a set of
points P ⊂ R

d. The Čech complex at scale α is the
nerve of the set of α-balls centered at the points of P .
The collection of these complexes at all scales is the
Čech filtration C = {Cα}. The k-barycentric decom-
position of the Čech filtration is denoted C̃k = k-BaryC.
Since C̃α

k ⊆ C̃α
k−1

for any α ≥ 0 and k ∈ N, this gives a
filtration in two variables known as a bifiltration, where
one dimension is parameterized by (increasing) α and
the other is parameterized by (decreasing) k. In fact,
the construction of C̃k gives a general recipe for deriving
a bifiltration from a filtered simplicial complex.
Our goal is to show that the filtration C̃k has the same

persistent homology as the (k, α)-offsets, Pα
k .

Theorem 7 For any finite set of points P ⊂ R
d and

any k ∈ N, the persistence diagrams of the (k, α)-offsets
of P and the k-barycentric decomposition of the Čech

filtration are identical:

Dgm {C̃k(P )} = Dgm {Pα
k }.

This theorem follows from a more general result about
good filtered covers, Theorem 10 below. It is the special
case when the good filtered cover is the collection of balls
of radius α centered at the points of P .

The Main Result Before getting to the main result, we
set up some definitions and prove two necessary lemmas.
Let F be a good filtered cover and let k ∈ N be a fixed
constant. Define the following filtrations:

J̃k := k-Bary (Nerve F)

Nk := Nerve (k-CoverF)

Ñk := Bary (Nk)

Formally, the vertices of Ñα
k are the simplices of Nα

k ,
those collections of k-wise intersections of sets in Fα

that have a nonempty intersection. However, we will
instead identify this vertex set with the corresponding
collection of k-tuples from Fα. Letting Xα and Y α be
the vertex sets of J̃ α

k and Ñα
k respectively, we have

Xα =
{

U ⊆ Fα : |U | ≥ k and
⋂

Uα 6= ∅
}

Y α =

{

V ⊆
(Fα

k

)

:
⋂

V ′∈V

⋂

V ′ 6= ∅
}

The complex Ñk contains redundant information.
The map π : Y → Y induces a simplicial map that
“projects out” this redundant information. It is defined
by

π(V ) =

(⋃

V

k

)

.

Figure 2 demonstrates the construction of some of the
simplicial complexes described above for the special case
of the Čech filtration and k = 2.

P
α

P
α

2
Ñ2 π(Ñ2)N2

Figure 2: The construction of N2, its barycentric de-
composition, and its image under π.

The following Lemma sows that the persistence dia-
gram of Ñk is unchanged by π.

Lemma 8 Dgm Ñk = Dgm π(Ñk).
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Proof. By Lemma 1, it suffices to show that for all
α ≥ 0, the inclusion ψ : π(Ñα

k ) →֒ Ñα
k induces an

isomorphism at the homology level. As above, let Y α

be the set of vertices of Ñk and let s = maxV ∈Y α |V |.
For i = 0 . . . s, define

Yi = {V ∈ Y α : |V | ≤ i} ∪ {π(V ) : V ∈ Y α, |V | > i}.

Let Ai be the subcomplex of Ñα
k induced on Yi. So

π(Ñα
k ) = A0 ⊂ · · · ⊂ As = Ñα

k .

It will suffice to show that the inclusion ψi : Ai−1 →֒ Ai

induces an isomorphism at the homology level for all
i = 1 . . . s. Let πi : Yi → Yi−1 be defined as

πi(V ) =

{

V if |V | < i
π(V ) if |V | ≥ i

So ψ = ψs ◦ · · · ◦ ψ1 and π = π1 ◦ · · · ◦ πs. Lemma 3
will give the desired isomorphism if πi is a simplicial re-
traction such that ψi ◦πi is contiguous with the identity
map, i.e. that (1) πi restricts to the identity on Yi−1,
(2) πi(σ) ∈ Ai−1 for all σ ∈ Ai, and (3) (σ∪πi(σ)) ∈ Ai

for all σ ∈ Ai.
Item (1) is obvious from the definitions. To prove (2)

and (3), fix a simplex σ = {V0, . . . , Vt} ∈ Ai and let
σ′ = σ ∪ πi(σ). If σ = σ′ then we are done, so we may
assume that for some vertex Vj ∈ σ, π(Vj) /∈ σ. Recall

that the simplices of Ñk (and also Ai) are strictly nested
sequences of vertices. So, there is at most one vertex Vj
such that π(Vj) /∈ σ, namely the one with cardinality
i. We may therefore express σ′ as σ ∪ {π(Vj)}. Since

σ ∈ Ai ⊂ Ñk, V0 ⊂ · · · ⊂ Vt. Observe that V ⊆ π(V )
for all V ∈ Y α and moreover that U ⊂ V implies π(U) ⊆
π(V ). So, it follows that

V0 ⊂ · · · ⊂ Vj ⊂ π(Vj) ⊂ π(Vj+1) = Vj+1 ⊂ · · · ⊂ Vt.

The inclusion of π(Vj) ⊂ π(Vj+1) is strict because of
the assumption that π(Vj) /∈ σ. This is a strictly nested
sequence of the vertices of σ′ so σ′ ∈ Ai, proving (3).
Moreover, πi(σ) = σ′ \ {Vj} so πi(σ) ∈ Ñk as well.
Since πi(σ) ⊂ Yi−1, we conclude that πi(σ) ∈ Ai−1,
proving (2). �

Next, we prove that J̃k and π(Ñk) have identical per-
sistence diagrams.

Lemma 9 Dgm J̃k = Dgm π(Ñk)

Proof. We will show that J̃k and π(Ñk) are isomorphic
filtered simplicial complexes and so the result will follow
from Lemma 2. It will suffice to show that for all α ≥ 0,
J̃ α
k and Ñα

k are isomorphic and that the isomorphism
does not depend on α.
The desired isomorphism is the map φ : Xα → π(Y α)

defined as φ(U) =
(

U
k

)

. The inverse of this map is

φ−1(V ) =
⋃

V . So, φ takes subsets U ⊂ Fα of size
at least k such that

⋂

U 6= ∅ to the family of k-element
subsets of U . It is easy to check that φ is a bijection.
To show that φ is an isomorphism, we will prove that

σ is a simplex of J̃ α
k if and only if φ(σ) is a simplex

of π(Ñk). Let σ = (U0, . . . , Uj) ∈ J̃ α
k be any simplex.

By the definition of J̃ α
k , U0 ⊂ · · · ⊂ Uj . For any pair

of vertices Ua and Ub, Ua ⊂ Ub if and only if φ(Ua) ⊂
φ(Ub). So, σ ∈ J̃ α

k if and only if φ(U0) ⊂ · · · ⊂ φ(Uj),

which holds if and only if φ(σ) ∈ π(Ñk). �

We are now ready to prove the main theorem relat-
ing the persistence diagrams of k-Bary (Nerve F) and
⋃

k-Cover F . The basic strategy is illustrated in Fig-
ure 3.

Theorem 10 If F is a good filtered cover and k ∈ N

then Dgm (k-Bary (Nerve F)) = Dgm (
⋃

k-CoverF) .

Proof. Recall the notations J̃k, Nk, and Ñk defined
above.

Dgm J̃k = Dgm π(Ñk) [by Lemma 9]

= Dgm Ñk [by Lemma 8]

= DgmNk [by Lemma 4]

= Dgm (Nerve (k-CoverF)) [by definition]

= Dgm
(

⋃

k-CoverF
)

[by Theorem 6]

�

The Barycentric Vietoris-Rips Filtration One draw-
back of the Čech filtration is that it requires testing
sets of balls for common intersections. An alternative
approach is to construct the edges only and include sim-
plices for every clique. This is known as the Vietoris-
Rips filtration R = {Rα}, where

Rα := {Q ⊆ P : diameter(Q) ≤ 2α}.

This can be computed using only the pairwise distances
between points and therefore is well-defined for any met-
ric space. We can apply the same barycentric bifiltra-
tion approach used above to yield a bifiltration {R̃α

k }.
Given filtrations F and G, we say Dgm F is c-

approximation for Dgm G if there is a 1-1 correspon-
dence that maps each (x, y) ∈ DgmF to (u, v) ∈ DgmG
such that u/c ≤ x ≤ cu and v/c ≤ y ≤ cv. A sufficient
condition for DgmF to be a c-approximation to DgmG
is that Fα/c ⊆ Gα ⊆ Fcα for all α ≥ 0. This is a simple
corollary to the Strong Stability Theorem of Chazal et
al. [3].
The Vietoris-Rips filtration gives a good approxima-

tion to the Čech filtration. It was shown by de Silva
and Ghrist that Cα ⊆ Rα ⊆ Ccα, where c = 2 for gen-
eral metric spaces and c =

√
2 for Euclidean spaces[6].
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P
α

P
α

2

C
α

N
α

2
Ñ

α

2

C̃
α

C̃
α

2

π(Ñα

2
)

Figure 3: We transform the collection of balls in two different ways to get equivalent complexes, C̃α
k (top) and π(Ñα

k )
(bottom) for k = 2.

So, the Vietoris-Rips filtration gives a c-approximation
to the /v Cech filtration for persistent homology. The
interleaving also implies the following extension to the
Vietoris-Rips bifiltration {R̃α

k}, where Rk = k-BaryR.

Theorem 11 For any fixed k, the persistence dia-

gram of the barycentric Rips filtration, {R̃α
k }, is a

√
2-

approximation to the persistence diagram of the (k, α)-
offsets {Pα

k } when the underlying space is Euclidean,

and is a 2-approximation for general metrics.

Proof. It suffices to observe that Cα ⊆ Rα ⊆ Ccα im-
plies k-Bary Cα ⊆ k-BaryRα ⊆ k-Bary Ccα. �

4 Conclusions and Future Work

We have presented a nerve construction to capture the
topology of the k-covered regions of a collection of well-
behaved sets. Our focus was on guaranteeing the correct
persistent homology, when the sets are filtrations, but it
is also possible to consider the case of just a single good
open cover S. In that case, using a slightly stronger
version of Lemma 3, it is possible to prove that the
k-Bary(NerveS) is homotopy equivalent to

⋃

k-CoverS.
In practice, it is common to truncate Čech filtrations

at some maximum scale to avoid the huge complexity
blowup. The method of barycentric bifiltrations nat-
urally adapts to this setting. In recent work, we pro-
posed an alternative approach to controlling the com-
plexity of distance based filtrations using hierarchical
net trees [12]. It may be possible to combine those
ideas with those presented in this paper to give sparse
approximations of the (k, α)-offsets. This is the subject
of future work.
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