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Abstract

Given n points P in a Euclidean space, the Johnson-Linden-strauss lemma guarantees that
the distances between pairs of points is preserved up to a small constant factor with high
probability by random projection into O(log n) dimensions. In this paper, we show that the
persistent homology of the distance function to P is also preserved up to a comparable constant
factor. One could never hope to preserve the distance function to P pointwise, but we show
that it is preserved sufficiently at the critical points of the distance function to guarantee similar
persistent homology. We prove these results in the more general setting of weighted kth nearest
neighbor distances, for which k = 1 and all weights equal to zero gives the usual distance to P .

1 Introduction

What can we say about the topology of a space from just a finite sample, and when can we have
any confidence in our answers? These are the questions driving the growing field of topological
inference and topological data analysis [11, 10]. Given a set of n points P assumed to be sampled
on or near some underlying set S ⊂ Rd, we want to provide some information about the topology
of S.

The most natural means of endowing P with some interesting topology is to look at the sublevel
sets of the distance function dP , which measures the minimum distance from any point x to a point
p in P . The α-sublevel set of dP is the union of balls of radius α centered at the points of P .
Niyogi, Smale, and Weinberger [34] showed that when S is a smooth manifold embedded in RD
and P is a sufficiently dense sample, the homology of S can be inferred from the homology of a
sublevel set of dP . Their method assumes some knowledge of the “right” sampling density required
and this is necessary as it is possible for a set to exhibit different topology at different sampling
resolutions. Persistent homology gives a truly multiscale view of the topology of S; it describes the
changes in topology at different scales. The persistence algorithm of Edelsbrunner, Letscher, and
Zomorodian [21] was explicitly developed to track the changes in homology of the sublevel sets of
dP . Since then, many other uses of persistent homology have emphasized the distance to a point
set as the primary object of study.

However, computing the persistent homology of the distance to a point set becomes harder as the
dimension increases because the complexity of the discrete representation of the sublevel sets can be
exponential in the ambient dimension. Thus, it would be nice to reduce the dimension of the input
set while approximately preserving the persistent homology. The Johnson-Lindenstrauss Lemma
implies that a random, scaled projection of P into O(log n/ε2) dimensions preserves the distance
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between pairs of points up to a distortion of 1 ± ε with high probability, but no projection can
preserve the distance function over the whole space. Despite this, we show that the distance function
is approximately preserved at the critical points of the distance function and thus the persistent
homology is also approximately preserved by the random projection. This was known only up to a
constant factor of about

√
2 + ε (see section 2 for a definition of approximate persistent homology

and a summary of this result). In this paper, we show that any linear transformation that preserves
distances and inner products like those in the Johnson-Lindenstrauss Lemma, also preserves the
persistent homology of dP up to a factor of 1 +O(ε). We prove this result more generally to show
that it also applies to weighted distance functions and weighted kth nearest neighbor distances,
which have been used in geometric inference to add robustness to outliers [38, 9].

This paper may be viewed as contributing to two previously disjoint lines of research. The
first concerns the search for more general geometric properties that are preserved under random
projection. For example the Sarlos’s work on projection of affine spaces [37]; Agarwal, Har-Peled,
and Yu’s work on projection of curves, surfaces, and moving points [2]; Baraniuk and Wakin [5]
and later Clarkson’s [17] work on projections of manifolds; and Magen’s work on projection of
volumes [30, 31]. The second concerns the search for more efficient computation of the persis-
tent homology of the distance to a point cloud. This line of research has also advanced on many
different fronts. Sheehy [39] and Dey, Fan, and Wang [20] looked at sparse constructions of Vietoris-
Rips filtrations which give constant factor approximations to the persistent homology of a distance
function; Oudot and Sheehy [36] used the theory of zigzag persistence to achieve a similar sparsifi-
cation with strong guarantees on noise removal. Recently, Kerber and Sharathkumar [28] employed
coresets for minimum enclosing balls to reduce the number of input points required. Lamar and
Letscher use random projection in a different way to reconstruct low-dimensional skeletons of high-
dimensional Delaunay triangulations for use in computing Pers(dP ) exactly up to fixed dimensional
homology groups [29]. These methods focus on shrinking the input to the persistence algorithm.
Another line of work attempts to speed up the computation of the algorithm directly using discrete
Morse theory or related reductions as in the work of Mischaikow and Nanda [33] and Bauer, Kerber
and Reininghaus [6].

Dealing with noise and outliers is another major challenge in topological data analysis. This
challenge has spawned several different research directions including statistical approaches ([35, 7,
4]) and the use of alternative distance functions that are less sensitive to outliers (see for example
the work of Chazal, Cohen-Steiner, and Mérigot [13], Guibas, Mérigot, and Morozov [23], and
Buchet et al. [9]). To accommodate approximations to more general distance functions, we prove
our results about random projections for weighted kth nearest neighbor distances. That is, the
distance at any point is the kth smallest weighted distance to a point of P , where each point has
a nonnegative weight that increases its distance to the other points. Recently, Buchet et al. [9]
showed that weighted distances with k = 1 suffice to give a good approximation to the so-called
distance to the empirical measure of P . Choosing k larger than 1 allows the distance function to
ignore up to k−1 outliers locally [38]. Setting all weights to zero and k = 1 gives the usual distance
to P .
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2 Background

Distance Functions We will deal with several different distance functions induced by the input
point set P . We assume a nonnegative weight w(p) for each point p ∈ P . The power distance from
a point x to a weighted point p is defined as

πp(x) :=
√
‖x− p‖2 + w(p)2,

where ‖ · ‖ denotes the Euclidean norm. Note that this differs by a sign change from the notion
of power distance used in weighted Delaunay triangulations, but this version makes more sense for
geometric inference (see [9]). Intuitively a point moves away from the rest of the space as its weight
increases.

The distance to the set P of weighted points is defined as

dP (x) := min
p∈P

πp(x).

Similarly, the weighted kth nearest neighbor distance is defined as

dkP (x) := min
S∈(Pk)

max
p∈S

πp(x),

where
(
P
k

)
denotes the set of subsets of P of size k.

Minimum enclosing ball The minimum enclosing ball of a point set P is the closed ball B
of minimum radius that contains all of P . We adapt this definition to be meaningful also for a
weighted point set P . The center of the minimum enclosing ball of P ⊂ RD is

center(P ) := argmin
x∈RD

max
p∈P

πp(x).

The radius of the minimum enclosing ball of P then is

rad(P ) = max
p∈P

πp(center(P )).

When the weights are all zero, this definition matches that of the standard case of unweighted
points. We will make use of the fact that center(S) ∈ conv(S), where conv(S) denotes the convex
closure of S (see Fischer and Gärtner [22] for a proof of this fact in a more general form). Note
that d1

P = dP , so we will work only with this more general class of functions dkP .
Minimum enclosing balls are especially relevant to our problem because the critical points of

the distance function are the centers of minimum enclosing balls of subsets of the input points [15,
12, 11].

Filtrations and Persistent Homology A filtration {Fα}α≥0 is a sequence of topological spaces
such that Fα ⊆ Fβ whenever α ≤ β. In this paper, all filtrations are parameterized by a real number.
The two types of filtrations we consider are sublevel filtrations of distance functions and filtered
simplicial complexes, yielding, respectively, continuous and discrete representations. The sublevel
filtration of a distance function dkP is {Fα}α≥0, where

Fα = (dkP )
−1

[0, α].
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From here on, we omit the index set in our notation for filtrations, writing {Fα} instead of {Fα}α≥0.
For any set S, an abstract simplicial complex X is a family of subsets of S that is closed under

taking subsets, i.e. if σ ∈ X and τ ⊂ σ then τ ∈ X. The sets in X are called simplices and the
elements of S are called vertices. Given a subset V ⊆ S, the induced subcomplex on V is the set
of simplices σ ∈ X such that σ ⊆ V . A filtered simplicial complex is a filtration {Xα} where each
space Xα is a simplicial complex. We say that the birth time of a simplex σ in a filtration is the
minimum α such that σ ∈ Xα.

The barycentric decomposition of a simplicial complex X, denoted bary(X), has one vertex for
each simplex in X and a simplex for every subset of simplices in X that are totally ordered by
inclusion, i.e. {σ1, . . . , σr} ∈ bary(X) if and only if σ1 ⊂ · · · ⊂ σr ∈ X. For a filtered complex
{Xα}, {bary(Xα)} is also a filtration, the birth time of a vertex σ in bary(Xα) is the birth time
of σ in {Xα} and the birth time of a simplex in bary(Xα) is the maximum of the birth times of
its vertices. Given a positive integer k, the k-barycentric decomposition of X, denoted k-bary(X)
is the induced subcomplex of bary(X) on the simplices σ ∈ X with |σ| ≥ k. That is, to form
k-bary(X), we remove vertices from bary(X) corresponding to simplices in X with fewer than k.
In particular, k-bary(X) = bary(X) when k = 1.

Persistent Homology gives a description of the changes in the topology of the spaces in filtration
as α grows. The output is represented as a multiset of pairs (αbirth, αdeath), where each pair describes
the lifespan of a topological feature in a filtration F = {Fα}. This set of pairs is denoted Pers(F).
We overload this notation and use Pers(dkP ) to denote the persistence of the sublevel filtration of
the function dkP . The persistence algorithm of Edelsbrunner et al. [21] takes a filtered simplicial
complex F as input and outputs the multiset of pairs Pers(F). Since the elements of Pers(F) are
pairs of real numbers, they can be drawn in the plane as a set of points called a persistence diagram
or as a set of intervals called a persistence barcode.

Approximate Persistent Homology For filtrations F and G and any constant c ∈ R, a c-
matching between Pers(F) and Pers(G) is an undirected, partial matching between the sets of pairs
such that

1. every pair (αbirth, αdeath) with αdeath/αbirth > c is matched, and

2. if (αbirth, αdeath) is matched to (βbirth, βdeath) then
αbirth/βbirth ≤ c and αdeath/βdeath ≤ c (and vice versa).

We say that Pers(F) is a c-approximation to Pers(G) if there exists a c-matching between them.1

Using results on the stability of persistence [14], the easiest way to prove that Pers(F) is a
c-approximation to Pers(G) is to show a c-interleaving, i.e. for all α ≥ 0,

Fα/c ⊆ Gα ⊆ Fcα.

This is the main tool that we use throughout this paper.

1 The notion of c-approximation presented here is related to the so-called L∞-bottleneck distance [18], de-
noted dB , when writing the persistence pairs on the log-scale. If Pers(F) is a c-approximation to Pers(G) then
dB(log(Pers(F)), log(Pers(F))) ≤ log c, where log(Pers(F)) denotes the set {(log b, log d) | (b, d) ∈ Pers(F)}. We
prefer the above definition as it obviates the need to augment persistence diagrams with infinite multiplicity on the
diagonals as is required in the definition of the bottleneck distance.
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Čech Complexes and Filtrations For a fixed parameter α, the α-Čech complex Cα is the set
of simplices σ such that rad(σ) ≤ α. Equivalently,

σ ∈ Cα if and only if
⋂
p∈σ

ball(p,
√
α2 − w(p)2) 6= ∅.

A complex formed in this way is called the nerve of the cover of the union of balls. The Nerve
Theorem [25, Cor. 4G.3] implies that Cα is homotopy equivalent to the α-sublevel sets of dP .

The sequence of Čech complexes {Cα} for all α ≥ 0 is called the Čech filtration. The Persistent
Nerve Lemma of Chazal and Oudot [16] implies that the Čech filtration has the same persistent
homology as the sublevel filtration of the distance function to P , i.e. Pers({Cα}) = Pers(dP ).
In recent work, we showed that this can be extended to kth nearest neighbor distances by re-
placing the Čech filtration with the k-barycentric decomposition of the Čech filtration [38], i.e.
Pers({k-bary(Cα)}) = Pers(dkP ). Note that both of these results are statements about nerves of
good covers and therefore extend to weighted distances.

Random Projection For high dimensional input sets P ⊂ RD, projecting P into a random
linear subspace of lower dimension (followed by a rescaling) is a popular method for reducing the
dimension while preserving some underlying structure. Following the definitions from Clarkson [17],
we say that a d-map from RD to Rd is an orthogonal projection onto a random linear subspace
of dimension d scaled by a factor of

√
D/d. Given a set of vectors V and a function f , we say f

ε-preserves squared lengths of V if for every v ∈ V ,

(1− ε)‖v‖2 ≤ ‖f(v)‖2 ≤ (1 + ε)‖v‖2

The Johnson-Lindenstrauss Lemma [26] says that with high probability a d-map preserves squared
lengths of n vectors V for d = Θ(log n/ε2) dimensions.

Lemma 1 (JL Lemma [26]). There is a constant c such that for a given set U ⊂ RD of n vectors
and ε, δ > 0, with probability at least 1− δ, a (c log(n/δ)/ε2)-map ε-preserves squared lengths of U .

Random projection can also be shown to preserve inner products (angles) up to an additive
error. For example, let U be a set of unit vectors and let f be a linear map that ε-preserves squared
lengths of

⋃
u,v∈U{u+ v, u− v}, then for all u, v ∈ U ,∣∣∣f(u)>f(v)− u>v

∣∣∣ ≤ ε. (1)

One direction of this bound follows from the observation that

f(u)>f(v) =
1

4

(
‖f(u) + f(v)‖2 − ‖f(u)− f(v)‖2

)
≤ 1

4

(
(1 + ε)‖u+ v‖2 − (1− ε)‖u− v‖2

)
=

1

4

(
4u>v + ε(‖u‖2 + ‖v‖2)

)
= u>v + ε.

A similar argument shows that f(u)>f(v) ≥ u>v − ε.
When dealing with points, we will use the following definition.
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Definition 2. An ε-JL projection of a point set P ⊆ RD is a linear map f : RD → Rd such that
for all u, v, and w in P ,

|(v − u)>(w − u)− (f(v)− f(u))>(f(w)− f(u))| ≤ ε‖v − u‖‖w − u‖.

In particular, if w = v then

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2.

Corollary 3. There is a constant c such that for a given set P ⊂ RD of n points and ε, δ > 0,
with probability at least 1− δ, a (c log(n3/δ)/ε2)-map is an ε-JL projection for P .

Proof. Consider the set of vectors V defined as

V =
⋃

u,v,w∈P
u6=w,v 6=w

{
v − u
‖v − u‖

+
w − u
‖w − u‖

,
v − u
‖v − u‖

− w − u
‖w − u‖

}
.

Lemma 1 says that with probability at least 1− δ, a d-map ε-preserves squared lengths of V , where
d = (c log(n3/δ)/ε2). Let f be such a map. Using the observation in (1) about inner products, it
follows that ∣∣∣∣∣

(
v − u
‖v − u‖

)> (
w − u
‖w − u‖

)
− f

(
v − u
‖v − u‖

)>
f

(
w − u
‖w − u‖

)∣∣∣∣∣ ≤ ε (2)

It follows from the linearity of f and (2) that f is an ε-JL projection.

Rather than stating all our results as probabilistic statements with high probability, we will
assume that an ε-JL projection is given. This way, we do not constrain the method of producing
the projection, whether it be sparse [27], fast [3], database-friendly [1], or otherwise. Corollary 3
implies that d = O(log n/ε2) suffices for any P , though it may be that projection into even lower
dimensions still gives an ε-JL projection as is the case with subsets of affine subspaces [37] or
smooth submanifolds [17].

Throughout, when we speak of projecting a set of weighted points, we assume that the weights
of the points are unchanged by the projection. That is, w(f(p)) = w(p) for any projection f . There
are useful methods that modify weights of points when projecting to a low dimensional subspace to
help correct for the inevitable error (see for example the work of Boissonat and Ghosh [8]), however,
we do not consider such methods in this work.

Three Results Using existing theory, there are some easy to prove facts about persistent ho-
mology under random projection. They are listed here as a partial map of the limits of what can
be shown by direct application of known results.

• First, if one is willing to settle for the persistence diagram of the so-called (Vietoris-)Rips
filtration rather than the distance function, random projection clearly gives a good approxi-
mation, because the Rips filtration only depends on pairwise distances. Thus, one can easily
get a 1/(1− ε)-interleaving of the Rips filtrations of P and f(P ) after identifying their vertex
sets.
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• Second, the Rips filtration is known to give a
√

2-approximation for the persistence diagram
of the distance function, and this can be combined with the previous statement about Rips
filtrations to guarantee that the persistent homology of the distance function is (

√
2/(1 −

ε))-preserved under random projection. If the dimension is small, a result of de Silva and
Ghrist [19] on the interleaving of Čech and Rips filtrations gives a slightly stronger bound of√

2d/(d+ 1)/(1− ε).

• Third, if one is willing to use more dimensions, the r-skeleton of the Čech filtration is preserved
under random projection into O(r log n/ε2) dimensions. A lemma of Agarwal, Har-Peled, and
Yu shows that the radius of the minimum enclosing ball of a point set is preserved up to 1±ε
if you are allowed to add the center to the set [2]. There are nO(r) simplices in the r-skeleton
of the Čech filtration and each has a birth time equal to the radius of the minimum enclosing
ball of its vertices. By including all nO(r) centers of these minimum enclosing balls in the
point set, an ε-JL projection f into O(r log n/ε2) dimensions will preserve the radii of all
subsets of size at most r+ 1. Thus, there will be a 1/(1− ε)-interleaving of the r-skeletons of
the Čech filtrations of P and f(P ) after identifying their vertex sets.

The main objective of this paper is to improve on the latter two results by showing that the
persistent homology in every dimension is (1 + ε)-preserved under random projection into O(log n)
dimensions.

3 The Main Results

Our main results about the persistent homology of distance functions will proceed by showing an
interleaving between the Čech filtrations of the points before and after the projection. This will
also extend to an interleaving between the barycentric decompositions of these two Čech filtrations.
Since the birth time of a simplex σ ⊂ P in a Čech filtration is equal to rad(σ), we first show in
Section 3.1 that the radius of every subset of P is approximately preserved by random projection.
Then we prove the main theorems about persistent homology in Section 3.2.

3.1 Minimum Enclosing Balls under Random Projection

Lemma 4. Let S be a set of weighted points and let f : RD → Rd be an ε-JL projection of S. If
x = conv(S) and p is any point in S then∣∣‖x− p‖2 − ‖f(x)− f(p)‖2

∣∣ ≤ 4ε rad(S)2

Proof. Fix any p ∈ S. Label the points of S as p1, . . . , pr such that p = p1. Since x ∈ conv(S), we
can write x as an affine combination of the points of S as follows.

x =

r∑
i=1

λipi, where

r∑
i=1

λi = 1.

It follows that

‖x− p‖2 =

∥∥∥∥∥
r∑
i=1

λi(pi − p)

∥∥∥∥∥
2

=
r∑
i=1

r∑
j=1

λiλj(pi − p)>(pj − p). (3)

7



By the linearity of f , the projection of x is

f(x) =

r∑
i=1

λif(pi).

So, by the same derivation as in (3), we get that

‖f(x)− f(p)‖2 =

r∑
i=1

r∑
j=1

λiλj(f(pi)− f(p))>(f(pj)− f(p)).

Since f is an ε-JL projection, for all i and j,

|(pi − p)>(pj − p)− (f(pi)− f(p))>(f(pj)− f(p))| < ε‖pi − p‖‖pj − p‖.

Let y denote center(S). By the triangle inequality, for all pi ∈ S,

‖pi − p‖ ≤ ‖pi − y‖+ ‖p− y‖ ≤ πpi(y) + πp(y) ≤ 2 rad(S).

It now follows that ∣∣‖p− x‖2 − ‖f(p)− f(x)‖2
∣∣

=
r∑
i=1

r∑
j=1

λiλj
∣∣∣(pi − p)>(pj − p)− (f(pi)− f(p))>(f(pj)− f(p))

∣∣∣

≤
r∑
i=1

r∑
j=1

λiλjε‖pi − p‖‖pj − p‖

≤
r∑
i=1

r∑
j=1

λiλj4ε rad(S)2

= 4ε rad(S)2.

Theorem 5. Let P be a set of weighted points in RD and let f : RD → Rd be an ε-JL projection
for P . For every subset S of P ,

(1− 4ε)rad(S)2 ≤ rad(f(S))2 ≤ (1 + 4ε)rad(S)2.

Proof. Fix any subset S of P . Let x = center(S). For any p ∈ P , the definition of the radius of the
minimum enclosing ball implies that

rad(f(S))2 ≤ max
p∈P

πf(p)(f(x))2 = max
p∈P

(‖f(x)− f(p)‖2 + w(p)2).

Applying Lemma 4 and the observation that πp(x) ≤ rad(S) for all p ∈ S, we get the following.

rad(f(S))2 ≤ max
p∈P

(‖x− p‖2 + 4ε rad(S)2 + w(p)2)

= max
p∈P

(πp(x)2 + 4ε rad(S)2)

≤ max
p∈P

((1 + 4ε)rad(S)2)

= (1 + 4ε)rad(S)2.
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Now, we need to prove the lower bound on rad(f(S)). If T is the subset of points p in S such that
πp(x) = rad(S), then x ∈ conv(T ) and f(x) ∈ conv(f(T )). Similarly, center(f(S)) ∈ conv(f(T )).
The perpendicular bisecting hyperplane between f(x) and center(f(S)) must have points of f(T )
on both sides. Thus, for some point q in T , f(q) is closer to f(x) than center(f(S)). So, by applying
this fact and Lemma 4, we derive the following bound.

rad(f(S))2 ≥ πf(q)(center(f(S)))2

= ‖f(q)− center(f(S))‖2 + w(q)2

≥ ‖f(q)− f(x)‖2 + w(q)2

≥ ‖q − x‖2 + w(q)2 − 4ε rad(S)2

= πq(x)2 − 4ε rad(S)2

= (1− 4ε)rad(S)2.

3.2 Persistent Homology under Random Projection

We are now ready to prove the main theorem of this paper, which guarantees that the persistent
homology of weighted kth nearest neighbor distance functions are all preserved up to a 1 + ε factor
by an ε-JL projection of P .

Theorem 6. Let P ∈ RD be a set of weighted points, let k be a positive integer, and let f : RD → Rd
be an ε-JL projection for P . Then Pers(dkf(P )) is a 1/

√
1− 4ε-approximation to Pers(dkP ).

Proof. Let {Cα} and {C′α} denote the Čech filtrations of P and f(P ) respectively, both realized
with P as a vertex set. That is, a subset σ ⊆ P is in Cα if rad(σ) ≤ α and σ ∈ C′α if rad(f(σ)) ≤ α.
By Theorem 10 of [38],

Pers({k-bary(Cα)}) = Pers(dkP ),

and similarly,
Pers({k-bary(C′α)}) = Pers(dkf(P )).

So, it will suffice to prove that {k-bary(Cα)} and {k-bary(C′α)} are (1 + ε)-interleaved. These
filtrations have a simplex for every nested sequence σ1 ⊂ · · · ⊂ σr of subsets of points of P where
|σ1| ≥ k. The birth time of such a simplex is rad(σr). By Theorem 5, for every σ ∈ Cα,

√
1− 4ε rad(σ) ≤ rad(f(σ)) ≤

√
1 + 4ε rad(σ).

It follows that for all α ≥ 0,

k-bary(C√1−4ε α) ⊆ k-bary(C′α) ⊆ k-bary(C√1+4ε α).

This interleaving implies desired approximation of guarantee.

Remark 7. If one is only interested in the case of k = 1, it is not necessary to pass through the
barycentric decomposition. In that case, the proof is identical while reasoning directly about the
Čech filtration rather than its barycentric decomposition.
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4 Discussion

We have shown that the persistent homology of the distance, the weighted distance, and the
weighted kth nearest neighbor distance to a point set P are (1±ε)-preserved under random projec-
tion into O(log n/ε2) dimensions. The key idea is to show that the squared radius of the minimum
enclosing ball of every subset of P is preserved up to a factor of 1±4ε by the projection. Similar to
classic theorems on random projection, these results hold regardless of the input dimension. This
may seem surprising given that the homology of the distance function is trivial in dimensions above
the ambient dimension. This implies that for r = ω(log n/ε2), any pairs (α, β) in the r-dimensional
persistent homology for the distance to n points must have β/α < 1 + ε. That is, the persistence
is negligible in higher dimensions.

Projecting more aggressively This work has assumed the usual context of random projection
in that the target dimension is O(log n/ε2) so that pairwise distances between points are preserved.
There are several instances for which it is known that projection into even fewer dimensions can
similarly preserve pairwise distances. For example, if P is sampled from a r-dimensional affine sub-
space, then Sarlos showed that projection into O(r/ε2) dimensions suffice. Similar results hold for
projections of manifolds by Baraniuk and Wakin [5] and later by Clarkson [17]. The Clarkson result
gives a target dimension that only depends on the underlying manifold. As shown by Verma [40],
if one is only interested in preserving geodesics on the manifold, there is a simple description of
this target dimension in terms of a covering number of the manifold.

All of these examples highlight a slight friction in the perspectives of geometric inference and
metric embeddings, which might be called the difference between the finite sample view and the
finite metric view. In geometric inference and its various forms in unsupervised learning (of which
manifold learning is but one), one assumes there is an underling object of fixed complexity and
having more samples, makes the inference problem correspondingly easier. For many metric prob-
lems where random projection has been found useful, such as in approximate nearest neighbor
searching [24], the hardness of instances is generally assumed to grow as the number of points
increases.

Open Problems One notable distance function that is absent from this paper is the so-called
distance to a measure [13] or, in the finite sample case, the k-distance [23, 32]. Although recent re-
sults on approximating the persistence diagram of the k-distance using weighted distance functions
makes our new random projection results applicable to k-distances [9], it remains open whether
the k-distance itself is (1 ± ε)-preserved under random projection. A possible first step towards
proving this would be to observe that the so-called k-means energy E of every k-tuple S of points
is preserved, where this energy is defined as the average squared distance from the points to their
centroid. This is a corollary of the following identity, where x is the centroid of S.

E =
1

n

∑
p∈S
‖p− x‖2 =

1

2n2

∑
p,q∈S

‖p− q‖2.

The k-distance is a weighted distance on the set of centroids of k-tuples of input points with weights
defined as the defined as the k-means energy.

It also remains open whether the constant factors in Theorem 6 are tight. Some preliminary
work indicates that the factor of 4 coming from Lemma 4 may not be necessary. Requiring distortion
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1±ε/4 rather than just 1±ε demands a target dimension that is 16 times larger. This is a constant,
but it is a significant one. Stated in terms of minimum enclosing balls, this asks if an ε-JL projection
preserves rad(S)2 up to 1± ε for every subset S of P . This would be a strengthening of Theorem 5
that would propagate improved constants through all of the later results.

Lastly, the linearity of the projection is sufficient, but is not necessary. We conjecture that any
map that preserves pairwise distances up to 1± ε should also preserve the radii of of every subset
up to 1± ε as well. We intend to address this more general question in future work.
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[9] Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and robust
topological data analysis on metric spaces. arXiv preprint arXiv:1306.0039, 2013. 1, 2, 4

[10] Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–308, 2009. 1

[11] Frédéric Chazal and Date Cohen-Steiner. Geometric inference. In Tesselations in the Sciences.
Springer-Verlag, 2013. To appear. 1, 2

11



[12] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
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[32] Quentin Mérigot. Lower bounds for k-distance approximation. In Proceedings of the Twenty-
ninth Annual Symposium on Computational Geometry, SoCG ’13, pages 435–440, New York,
NY, USA, 2013. ACM. 4

[33] Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation
of persistent homology. Discrete Computational Geometry, 50(2):330–353, 2013. 1

[34] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008. 1

[35] Partha Niyogi, Stephen Smale, and Shmuel Weinberger. A topological view of unsupervised
learning from noisy data. SIAM J. Comput., 40(3):646–663, 2011. 1

[36] Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.
In Proceedings of the 29th annual Symposium on Computational Geometry, pages 387–396,
2013. 1

[37] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In FOCS, pages 143–152, 2006. 1, 2

[38] Donald R. Sheehy. A multicover nerve for geometric inference. In CCCG: Canadian Conference
in Computational Geometry, 2012. 1, 2, 3.2

[39] Donald R. Sheehy. Linear-size approximations to the Vietoris-Rips filtration. Discrete &
Computational Geometry, 49(4):778–796, 2013. 1

[40] Nakul Verma. A note on random projections for preserving paths on a manifold. Technical
Report CS2011-0971, UC San Diego, 2011. 4

13


	1 Introduction
	2 Background
	3 The Main Results
	3.1 Minimum Enclosing Balls under Random Projection
	3.2 Persistent Homology under Random Projection

	4 Discussion

