CCCG 2020, Saskatoon, Canada, August 5-7, 2020

One Hop Greedy Permutations®

Donald R. Sheehy'

Abstract

We adapt and generalize a heuristic for k-center clus-
tering to the permutation case, where every prefix of
the ordering is a guaranteed approximate solution. The
one-hop greedy permutations work by choosing at each
step the farthest unchosen point and then looking in
its local neighborhood for a point that covers the most
points at a certain scale. This balances the compet-
ing demands of reducing the coverage radius and also
covering as many points as possible. This idea first ap-
peared in the work of Garcia-Diaz et al. [6] and their
algorithm required O(n?logn) time for a fixed k (i.e.
not the whole permutation). We show how to use geo-
metric data structures to approximate the entire permu-
tation in O(nlog A) time for metrics sets with spread A.
Notably, this running time is asymptotically the same
as the running time for computing the ordinary greedy
permutation.

1 Introduction

Greedy permutations of points in a metric space are use-
ful for many standard computations, such as proximity
search data structures, sampling, and k-center cluster-
ing. They were developed independently by Gonzalez [7]
and also Dyer and Frieze [1] in 1985 for k-center cluster-
ing. Starting from any point the next point in a greedy
permutation is chosen to be the farthest remaining point
from the previously chosen points. Greedy permuta-
tions are effective for so many tasks because every pre-
fix of the ordering gives a good, mostly uniform sample,
keeping points as far apart as possible while (approx-
imately) minimizing the maximum distance from any
point to the sample.

The coverage radius of a subset S C P is the min-
imum 7 such that P C |J,.gball(z,r). The metric
k-center problem is a search for k points that minimize
the coverage radius. The first k£ points of a greedy per-
mutation provide a 2-approximate k-center, i.e. the cov-
erage radius is at most twice the optimal solution. This
is known to be the best possible unless P = N P. How-
ever, there are several heuristics that have been shown
to produce better solutions in practice. One such heuris-

*This work was partially supported by the NSF under grant
CCF-1652218.

TDepartment of Computer Science, North Carolina State Uni-
versity, don.r.sheehy@gmail.com

tic developed by Garcia-Diaz et al.[6] achieves a worse
theoretical guarantee, but consistently outperforms the
greedy approach on benchmarks. That approach works
for a fixed r by choosing at each step, not the farthest
point, but instead a point within distance r of the far-
thest point that covers the most previously uncovered
points in its radius r ball. Then the algorithm binary
searches for a good value of r. We call this the one-hop
k-center algorithm.

Given that the greedy permutation is widely used be-
cause of its ability to provide a sequence of good covers,
it makes sense to import these efficient heuristics from
the setting with fixed r and k into the permutation set-
ting. In this paper, we will generalize this approach
to give a permutation of one-hop k-centers and show
how to relate it to approximate greedy permutations.
We call these one-hop greedy permutations. We will
then show how to compute a one-hop greedy permu-
tation in O(nlog A) time, where A is the spread of the
input (the ratio of the largest to smallest pairwise dis-
tances). As (almost) always with such an analysis, the
true worst case is O(n?), but would require point sets
with exponential spread to achieve. In theory, this can
be brought down to O(nlogn) using elaborate theoreti-
cal techniques [3]; however, given that our interest is in
the practical performance, we describe our algorithm in
terms of a standard practical approach. In theory, the
greedy approach is optimal anyways. In practice, it is
very rare to find inputs with super-polynomial spread.
A proof of concept implementation was used to generate
some examples visualized in Section 5.

2 Background

2.1 Metrics Spaces

Let P be a finite subset of a metric space. Let d(a,b)
denote the distance between a and b. The metric ball
centered at x with radius r is

ball(z,r) :={p € P|d(z,p) <r}.

For a subset S C P, let d(a, S) := mingegd(a,x). The
Hausdorff distance between two subsets is defined as

dy(S,T) := max{maxd(s,T), max d(t,S)}.

seS te

So, for a subset S <C P, this simplifies to
maxpep d(p, S), also known as the coverage radius of

3274 Canadian Conference on Computational Geometry, 2020

S. A subset S C P is an (o, 3)-net if it has coverage
radius at most 8 and all pairs of points are at least «
apart. The constant « controls the packing and 8 con-
trols the covering. If « = 3, then we call it an a-net,
and if the constants are unimportant, we just call it a
net. The spread A of a point set is the ratio of the
largest distance to the smallest distance. The quantity
log A features naturally in the analysis of many geomet-
ric algorithms and data structures as it roughly counts
the number of levels in a hierarchical data structure in
which the scale drops by a constant factor at each level.

The doubling dimension for a metric is the minimum
number p such that every ball of radius 27 can be cov-
ered by 2” balls of radius r. A metric is said to be a
doubling metric if the doubling dimension is bounded
by a constant. The natural appeal of doubling metrics
is that they give a notion of low dimensionality for gen-
eral metric spaces. In particular, packing and covering
arguments similar to those used in Euclidean space can
be used. For example, an («, 8)-net of the points in a
ball of radius will have at most O(2"/®) points.

2.2 From Approximate Greedy to k-Center

Let P = (p1,...,pn) be an ordered set of points and
let P; = (p1,...,pi) be the ith prefiz. A c-approzimate
greedy permutation is an ordering of P such that for all
i=1...n—1,

dH(R7P) S Cd(p’b+17P’L)

A l-approximate greedy permutation is simply called a
greedy permutation.

Below, we explain how the standard proof that the
greedy permutation gives 2-approximate k-centers for
all k can be extended to the approximate greedy case.
More specifically, we show that that a c-approximate
greedy permutation yields a 2c-approximate k-center
clustering.

Lemma 1 If P is ordered according to a c-approximate
greedy permutation, then every prefiz Py, is an (Z,7)-net
where r = dpg (P, P).

Proof. Fix any value of k. The coverage radius of Py, is
r by definition. For the packing condition, we observe
that for any i < j < k, we have

d(p;,p;) > d(p;, Pj—1)

1
> EdH(P7 Pj_1)

1
7dH(P7 Pk:)

v

QI3

Lemma 2 If P = (p1,...,pn) be a c-approzimate
greedy permutation for some ¢ > 1, then Py is a 2c-
approzimate k-center for all k.

Proof. Let r = dy(Px, P) be the coverage radius of
Py. Let r, be the radius of the optimal k-center, Opt.
The goal is to show that r < 2cr,.

By Lemma 1, every two points in P are at least 7
apart. If there are two points of P, within distance 7, of
one center in the optimal solution, then their distance
is at most 2r,. Thus, it would follow that % < 2r,
and therefore r < 2c¢r, as desired. If no two points
have this property, then every ball of radius r, in the
optimal solution contains a unique point of Py and thus
dy (Pr, Opt) < r.. By the triangle inequality, r < 2r, <
2cr, because

r= dH(P, Pk) < dH(Pk,Opt) -I—d(P, Opt) < 274,

O

3 The One-Hop Greedy Permutation

The heuristic proposed by Garcia-Diaz et al., which we
refer to as one-hop k-center was motivated by the ob-
servation that the greedy permutation achieves its fac-
tor of 2 approximation factor by choosing points very
conservatively. Another perspective is that the greedy
approach reduces the coverage radius by actively seek-
ing out and covering the extremes, which is at odds with
the goal of finding “centers”.

A simple one-dimensional example shows how the
greedy algorithm can make poor selections (see Fig-
ure 1). Suppose we start with a unit-length line segment
densely sampled with points and a sample point on one
end. The next point taken in the greedy ordering is the
other end of the segment. The coverage radius is one
half. A better choice would be to take the point at %
This would reduce the coverage radius to %

Figure 1: On the left, a greedy permutation takes the
end point as its second point, resulting in a coverage
radius of % On the right, the one-hop greedy permuta-
tion backs of from the purely greedy choice resulting in
a coverage radius of %

There are several challenges that naturally arise in
generalizing the one-hop approach from fixed radius (i.e.
fixed k) setting to the permutation setting. The main

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

one is the changing radius; the radius decreases with
each prefix. This means we must choose what the target
radius should be at each step rather than using binary
search as in the original work. If we did use binary
search, we would potentially get a completely different
set for each k instead of a single permutation of the
input. The natural choice for the scale at each step is
to be some fraction of the current radius. We will allow
this to be a tunable parameter, which also allows us to
prove some other theoretical properties below.

Let P be the input metric. We will define an order-
ing (p1,...pn) of P. Let P, = (p1,...,p;) denote the
prefixes of the ordering. For each i, let ¢; denote the
point in P that maximizes the distance to P;,_;. In
other words, ¢; is the point that would be added next if
the permutation were greedy. Fix a parameter a. The
ordering is a-one-hop greedy if for each i, the point p;
is the point in ball(g;,ar) with r = d(g;, P;—1) that
maximizes

i—1

ball(p;,ar)\ U ball(p;,ar)|.
j=1

The point is to balance between covering the farthest
point and also covering many points.

Lemma 3 If P is ordered according to an «-one-hop
greedy permutation, then P is ﬁ—appm:m’mate greedy.

Proof. By definition, the point p; is chosen in a ball
of radius ar centered at the point of distance r =
dy(P;—1,P) from P,_;. So, by the triangle inequality,
d(p;, Pi-1) < (1—a)r = (1—a)dy(Pi—1, P). Therefore,
P is -approximate greedy as desired. O

-«

The Lemma 2 and Lemma 3 imply that our one-
hop greedy permutations will give %—approximate
k-center solutions. As « goes to zero, we get the
standard greedy permutation and its corresponding 2-

approximate k-centers.

The choice of « is nonobvious. On the one hand,
a large value provides flexibility in choosing the next
point. On the other hand, that takes more time and
the guarantee gets worse. Algorithmically, the clean-
est choice for « is to let it equal % For any value
of a < %, the points in ball(p;,ar) are disjoint from
U;;ll ball(p;,ar). This saves us the trouble checking
if points are already covered when choosing the next
point. Perhaps accidentally, choosing o = % leads to
a 3-approximate k-center, which is the approximation
ratio achieved by Garcia-Diaz et al. in the fixed radius
case. Whether such a choice is actually best will likely

vary based on peculiarities of the input.

4 Efficient Approximations

The original algorithm for one-hop k-centers started
by sorting all distances in O(n?logn) time. It then,
used this ordering to compute a one-hop k-center for
a given radius r in quadratic time in a manner simi-
lar to the original Gonzalez greedy ordering algorithm.
The extra step in each iteration was the search in the
neighborhood of the greedy choice for a point that cov-
ers more points in its radius r ball (that were not al-
ready covered by a previously inserted point). This also
takes quadratic time. Thus, the total running time is
O(n?logn).

In the low-dimensional setting, one can hope to do
better with approximations. In the case of greedy per-
mutations, Har-Peled and Mendel [8] showed that the
approach of Clarkson [2, 3] runs in O(nlog A) time. We
will augment this approach with a data structure that
does approximate range sampling, to make the local im-
provement step faster. In the end, we will have an al-
gorithm that runs in O(nlog A) time. Thus, it matches
the asymptotic running time of the greedy permutation
computation, albeit with worse constants.

A (1+¢)-approzimate one-hop greedy permutation of
P is an ordering of P that could be a one-hop greedy
permutation if all distances are perturbed by a factor of
at most 1+ ¢. For such an approximation, it will suffice
to choose the next point among an er-net where r is the
distance to the current farthest point. It also suffices
to count points in metric balls only approximately as
described below.

4.1 Approximate Range Sampling

A metric range search takes a point x and a radius
r as input and returns the points in ball(z,r). A c-
approzimate metric range search returns a set of points
S such that

ball(x,r) C S C ball(z,cr).

That is, it may return some extra points that are close
to the desired ball. Similarly, metric range counting
and c-approximate range counting return the number
of points that would be returned by the corresponding
search.

Many data structures for proximity search on metric
spaces can easily be adapted to perform approzimate
range sampling, which is a hybrid between range search
and range counting. A range sampling query (z,r,¢)
for a given resolution e returns an e-net of ball(x,r)
along with a weight for each point. The points in the
range are each assigned to a point in the sample within
distance ¢ and the weight of a point is the number of
points assigned to it. In the c-approximate variant, the
range may include points of distance up to cr away from
x.

3274 Canadian Conference on Computational Geometry, 2020

Perhaps the simplest data structure to use for ap-
proximate range sampling would be the cover tree of

Beygelzimer et al. [1], particularly in the variant by
Izbicki and Shelton [9]. Other hierarchical data struc-
tures such as navigating nets [12], net-trees [3, 11, 10],

or deformable spanners [5] could also be used. In any
of these data structures, one searches through a hierar-
chy of nets, where the ith level is a 2° net. They are
all designed for range searching, though they are sold
as nearest neighbor search data structures, which is, of
course, a kind of range search with a range that shrinks
as you proceed. A search through such a data structure
maintains a 2‘-approximate range sample at each level.
Moreover, for doubling metrics, the number of points
in the sample is 20('/7). So, any search that stops at
a level i such that » = Q(2%) will only return a con-
stant sized set of (weighted) points. The running time
of such a search is proportional to the number of levels
searched, which is O(log A) in the worst case.

4.2 Putting it all together

A standard approach to computing a greedy permuta-
tion is to use a kind of discrete Voronoi diagram. At step
1, each point is associated with its nearest neighbor in
P;. A cluster is the set of points associated with a given
point. When the point p; is added to the permutation,
a search is performed to find which points now have
p; as their nearest neighbor. To speed up the search,
one stores a graph with vertex set P; that connects two
points p, and py if adding a point from the cluster of p,
could affect the cluster of p,. Armed with this graph,
the update only checks points within a constant factor
of the current coverage radius. This approach first for-
malized [2] and implemented [3] by Clarkson was shown
to only require O(n log A) time for greedy permutations
in doubling metrics by Har-Peled and Mendel [3]. The
same analysis easily holds for approximately greedy per-
mutations. The two key steps are that, one, the graph
has constant degree on a net, and, two, the distance to
a point is computed only a constant number of times
before the coverage radius must go down by a factor of
two. We call this structure the cluster graph.

Our algorithm uses a cluster graph and approximate
range sampling to compute an approximate one-hop
greedy permutation. Let o < 1 be the hop parame-
ter. Let ¢ <= 1 be the desired approximation factor.
At each iteration, we add one point using the following
steps. First, we use a heap to quickly find the existing
point p whose cluster has the largest radius. The far-
thest point f in this cluster is the point that would be
added in a pure greedy permutation. Let r be the dis-
tance from f to p. We compute an approximate range
sample S in ball(f,2ar) at scale er. We can then com-
pute approximate range counts for ball(q, ar) for each
q € S in constant time by adding the weights of points

in S, careful not to count points that are within ar of
a previously added point. The previously added points
that could be within this radius are all neighbors of p in
the cluster graph, so there are only a constant number
of them. There are a constant number of points in S
and each takes constant time. We add the point with
the largest count. In total, we get the following.

Theorem 4 Let P be points in a metric space with con-
stant doubling dimension. Let o < 1 and € < 1 be con-
stants. Then, a (1 + ¢)-approximate a-one-hop greedy
permutation of P can be computed in O(nlog A) time.

5 A Proof of Concept

We integrated an implementation of the one-hop
greedy permutations into our Python library for greedy
permutations. It can be found on Github at
https://github.com/donsheehy/
greedypermutation. This library also includes
standard algorithms for computing pure greedy
permutations and its approximations.

We found that on small, low-dimensional examples,
there appears to be a very slight improvement with the
one-hop greedy permutations. The example in Figure 2
is typical. We set a = 1/3 and took a uniform sample of
points in a square. The figure show three different scales
in the permutation at k = 10, k = 25, and k£ = 50. The
graph in Figure 3 shows how the radii change with the
number of points. Even in this simple example, the one-
hop greedy permutation often has the smaller coverage
radius.

It remains to see if the improvements attained with
one-hop k-centers on large benchmark instances coming
from TSP datasets [0] are realized by the one-hop greedy
permutations.

6 Conclusions

We have generalized the one-hop k-center heuristic to
define one-hop greedy permutations. We have also given
an efficient algorithm to compute approximations in
O(nlog A) time.

There are several future directions to consider. In
our implementation, we used a standard greedy per-
mutation to build the data structure for approximate
range sampling. This is novel in that it does a kind
of boot strapping from an ordinary greedy permutation
to a one-hop greedy permutation. Another direction to
consider is whether the final choice should really count
points by weight or just count points in the approximate
range sample. It seems that the latter approach, though
farther from the one-hop k-center approach could be
more stable to drastically varying density in the under-
lying points set.

https://github.com/donsheehy/greedypermutation
https://github.com/donsheehy/greedypermutation

CCCG 2020, Saskatoon, Canada, August 5-7, 2020

one-hop greedy

Figure 2: For points in the plane, there is little visual
difference between the two cases except at the boundary.
The one-hop greedy permutation tends to overshoot the
boundary less.

coverage radius

—— one hop greedy

250
pure greedy
200 A
150 A
100 +
50 4 . «—\\—/_\/‘
0 5 10 15 20 25

number of points

Figure 3: This is the graph of the coverage radii for the
two approaches on the small example shown above.

References

1]

A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML, 2006.

2]

3]

(4]

K. L. Clarkson. Nearest neighbor queries in metric
spaces. Discrete & Computational Geometry, 22(1):63—
93, 1999.

K. L. Clarkson. Nearest neighbor searching in metric
spaces: Experimental results for ‘sb(s)‘. Preliminary

version presented at ALENEX99, 2003.

M. Dyer and A. Frieze. A simple heuristic for the p-
centre problem. Operations Research Letters, 3(6):285—
288, 1985.

J. Gao, L. J. Guibas, and A. Nguyen. Deformable span-
ners and applications. Computational Geometry: The-
ory and Applications, 35:2—19, 2006.

J. Garcia-Diaz, J. Sanchez-Hernandez, R. Menchaca-
Mendez, and R. Menchaca-Mendez. When a worse
approximation factor gives better performance: a 3-
approximation algorithm for the vertex k-center prob-
lem. Journal of Heuristics, 23(5):349-366, 2017.

T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293-306,
1985.

S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148-1184, 2006.

M. Izbicki and C. R. Shelton. Faster cover trees. In Pro-
ceedings of the Thirty-Second International Conference
on Machine Learning, 2015.

M. Jahanseir and D. Sheehy. Nettrees. Available from
http://dx.doi.org/10.5281/zenodo.1409233, 2018.

M. Jahanseir and D. R. Sheehy. Transforming hierarchi-
cal trees on metric spaces. In Proceedings of the Cana-
dian Conference on Computational Geometry, 2016.

R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In SODA, 2004.

http://dx.doi.org/10.5281/zenodo.1409233

	Introduction
	Background
	Metrics Spaces
	From Approximate Greedy to –Center

	The One-Hop Greedy Permutation
	Efficient Approximations
	Approximate Range Sampling
	Putting it all together

	A Proof of Concept
	Conclusions

