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Abstract
We show how a filtration of Delaunay complexes can be used to approximate the persistence diagram
of the distance to a point set in Rd. Whereas the full Delaunay complex can be used to compute this
persistence diagram exactly, it may have size O(n⌈d/2⌉). In contrast, our construction uses only O(n)
simplices. The central idea is to connect Delaunay complexes on progressively denser subsamples by
considering the flips in an incremental construction as simplices in d + 1 dimensions. This approach
leads to a very simple and straightforward proof of correctness in geometric terms, because the final
filtration is dual to a (d + 1)-dimensional Voronoi construction similar to the standard Delaunay
filtration. We also, show how this complex can be efficiently constructed.
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1 Introduction

The persistent homology of the distance to a set of points P in Rd describes the evolution of
the topology of

⋃
p∈P ball(p, α) as α grows from 0 to ∞. It is a multi-scale description of

the “shape” of the point set. The theory of persistent homology has its origins in the work
by Edelsbrunner et al. [17, 15] on α-hulls and α-shapes and their relation to the Delaunay
triangulation. The paper that introduced persistent homology [18] was based on ordering
the simplices of the Delaunay triangulation. Many papers have followed that use alternatives
to the Delaunay triangulation in different spaces, but in Euclidean space, the Delaunay
triangulation has a certain perfection in its ability to represent the topology of the distance
function. For approximations, the potential O(n⌈d/2⌉) size of the Delaunay triangulation
cannot compete with the linear size of so-called sparse filtrations [35, 2, 6, 13]. In this paper,
we combine the ideas from sparse filtrations with the Delaunay triangulation, achieving both
the elegance of the Delaunay triangulation and the worst-case linear-size guarantees. Along
the way, we will give a new topological perspective to the classic approach to computing
Delaunay triangulations by flips.

A flip in a 2-dimensional triangulation is the replacement of two adjacent triangles whose
four vertices are in convex position with the other two possible triangles on the same vertices.
A classic way of visualizing flips is to view the two configurations as projections of the upper
and lower hull of a tetrahedron in three dimensions (see Fig. 1). This view also permits one to
interpret other operations as flips, such as the insertion of a new vertex splitting one triangle
into three. We call the former class of flips (2, 2)-flips and the latter (1, 3)-flips, indicating the
number of triangles before and after the flip. More generally, there are (k, d + 2 − k)-flips for
sets of d + 2 points in Rd. These are likewise interpreted as projections of (d + 1)-simplices.
In this paper, we will use the (d + 1)-simplices of the flips to give a topological connection
between the Delaunay triangulation of a set of points and the Delaunay triangulation of a
subset – both triangulations are subcomplexes of a (d + 1)-dimensional complex containing
the flip simplices. Throughout, we will distinguish between the terms Delaunay triangulation

© Donald R. Sheehy;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Computational Geometry (SoCG 2021).
Editors: Kevin Buchin and Éric Colin de Verdière; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:don.r.sheehy@gmail.com
http://donsheehy.net
https://orcid.org/0000-0002-9177-2713
https://doi.org/10.4230/LIPIcs.SoCG.2021.58
https://arxiv.org/abs/2012.01947
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


58:2 A Sparse Delaunay Filtration

Figure 1 Flips in the plane correspond to the upper and lower facets of a tetrahedron in R3.

for the embedded geometric complex on a set of points and a Delaunay complex, which is
the corresponding abstract simplicial complex. As will become clear, the addition of the flip
simplices will result in a simplicial complex that will not be embedded in Rd.

Many Delaunay triangulation algorithms use flips as an algorithmic primitive. This idea
goes back to the work of Lawson [28, 27] and reached its more modern form in the simultaneous
papers of Bowyer [3] and Watson [37]. As the d-simplices of the Delaunay triangulation are
those for which the circumsphere is empty of other input points, a transformations of the
problem into Rd+1 can make this criterion linear. This was first done by Brown [4] using
the stereographic map and later by Edelsbrunner and Seidel [19] using the parabolic lifting.
Adjusting the parabolic lifting can be interpreted as assigning weights to points and leads
to weighted Delaunay triangulations (also known as regular triangulations). Edelsbrunner
and Shah showed that incremental, flip-based algorithms also work in the weighted case [20]
despite obstructions discovered by Joe [26] to applying Lawson’s algorithm in R3.

The theory of persistent homology applies to settings much more general than the sublevel
sets of distance functions in Euclidean space. One common setting is to consider points in
finite metric spaces. The complex used for this is called the (Vietoris-)Rips complex. At
scale α, it contains a simplex for every clique in the α-neighborhood graph of the points.
In order to deal with the size blowup of this complex, several sparsification methods have
been proposed [35, 2, 6, 13]. All of these approaches attempt to use only subsets of the input
points as the scale increases. In this paper, we will show how to adapt this approach to the
Delaunay complex.

In other related work, several authors have given sparse approximations for distance
functions in Euclidean space. For example, Hudson et al. [25] use ideas from mesh generation
to give an approximation to the distance function. Choudhary et al. [11] used a method of
overlapping grids to give an approximation that has an asymptotically smaller dependence
on the dimension than previous methods.
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2 Background

2.1 Distances, Points, and Weights
Let ∥a − b∥ denote the Euclidean distance between a and b in Rd. Let ball(c, r) denote the
closed ball centered at c ∈ Rd with radius r. For a set P ⊂ Rd, let

d(x, P ) = min
p∈P

∥x − p∥.

Equivalently, d(x, P ) is the minimum r such that P ∩ ball(x, r) is nonempty.
The distance function induced by a point set P maps each point x ∈ Rd to d(x, P ). The

sublevel sets of this distance function is often used in topological data analysis as a way to
extend a finite set and fill in the space between the points. These sublevel sets are sometimes
called offsets and are formally defined for each scale α as

P α := {x ∈ Rd | d(x, P ) ≤ α} =
⋃

p∈P

ball(p, α).

The Hausdorff distance between two point sets P and Q is defined as

dH(P, Q) := max{max
p∈P

d(p, Q), max
q∈Q

d(q, P )}.

Equivalently, dH(P, Q) is the minimum r such that P ⊆ Qr and Q ⊆ P r.
One way to modify a distance function and give more or less importance to certain points

is to assign a weight to each point. A weighted point p̂ is a point p ∈ Rd and a weight wp ∈ R.
The weighted distance to p̂ is defined as

πp(x) :=
√

∥x − p∥2 + w2
p.

The weighted distance is also called the power distance, especially in the case where one
subtracts the weight rather than adds it. Throughout the paper, we add weights rather than
the usual power distance as it substantially simplifies both the conceptual use of weights
to decrease the importance (i.e., radius) of some points and also the arithmetic. All of the
constructions we present can be translated into power distances by a global transformation
of all the weights and a reinterpretation of the scale. A similar approach to weighting point
may be found in [5].

We use the same notation for the weighted distance of a (non-weighted) point x to a
weighted point set P̂ as we did in the unweighted case.

d(x, P̂ ) := min
p̂∈P̂

πp̂(x).

Thus, unweighted points way be viewed as points with weight zero. The offsets of P̂ are

P̂ α = {x ∈ Rd | d(x, P̂ ) ≤ α}.

2.2 Persistent Homology
A family of sets {Xα | α ∈ R} is called a filtration if for all α ≤ β, we have Xα ⊆ Xβ . We
will reserve superscripts on sets as a notation for filtration parameters and will denote a
filtration (Xα) with parentheses to stress the importance of the ordering. For filtrations that
are defined only over an interval [s, t] ⊂ R, we will assume that Xα = Xs for α < s and
Xα = Xt for α > t.

SoCG 2021



58:4 A Sparse Delaunay Filtration

The persistent homology of (Xα) is a representation of the changes in the topology of
Xα as α varies over R. The result is a persisence diagram, denoted Dgm(Xα), that is a
multiset of pairs (b, d) in the extended plane (R∪∞)2. Each pair (b, d) represents a nontrivial
homology class that exists only in Xα for α in the half open interval [b, d). Thus, b is the
birth time of a topological feature and d is its death time.

Persistent homology is usually computed on combinatorial objects called simplicial
complexes. A simplicial complex is a pair of sets (V, S) where V is the vertex set and
S ⊆ Pow(V ) is the simplex set. It is required that S is closed under subsets, i.e., if σ ⊆ τ ∈ S,
then σ ∈ S. A family (Kα) of simplicial complexes is called a filtered simplicial complex if
for all α ≤ β, we have Kα is a subcomplex of Kβ .

The main problem addressed in this paper is the efficient approximation of Dgm(P α) by
constructing a linear-size filtered simplicial complex based on the Delaunay triangulation.

2.3 Greedy Permutations
For ranges of indices, let [a : b] denote {a, . . . b − 1} and [b] denote [0 : b]. If the input set P

is ordered as (p0, . . . , pn−1), let Pi{pj | 0 ≤ j < i} denote the ith prefix of the ordering. The
spread ∆ of P is the ratio of the largest and smallest pairwise distances among points of P .

A greedy ordering or greedy permutation of P is defined as follows. The first point, p0,
may be chosen arbitrarily. The ith point, pi is chosen to be a point that maximizes d(pi, Pi).
That is, each point after the first is the farthest from its predecessors. Equivalently,

d(pi, Pi) = dH(Pi, P ).

Greedy permutations have been reinvented several times, especially in the context of
k-center clustering (see Gonzalez [21] or Dyer and Frieze [14]). Clarkson [12] adapted his
sb data structure for nearest neighbor search to compute greedy permutations. Har-peled
and Mendel [23] showed that Clarkson’s approach yields an O(n log ∆)-time algorithm in
low-dimensional metric spaces. They also gave an O(n log n)-time algorithm in such cases.

The insertion radius of a point pi is defined as

ri := d(pi, Pi)

By convention, r0 = ∞. For greedy orderings, if i < j, then ri ≥ rj .
Every prefix Pi of a greedy permutation satisfies both packing and covering conditions in

the following sense. The set Pi is a ri−1-packing: for every pair of points in a, b ∈ Pi, we
have ∥a − b∥ ≥ ri−1. The set Pi is an ri-covering of P : for every point a ∈ P , there is a
point b ∈ Pi such that ∥a − b∥ ≤ ri.

2.4 Weights and Time
We will be considering weighted point sets in which the weights vary in time. For each point
pi in P , we will assign a nonnegative weight function wi : R → R. For a given α, the set

P̂ (α) := {(pi, wi(α)) | pi ∈ P}

is a weighted point set in which the weight of pi is wi(α). Let πi,α(x) denote the weighted
distance from the weighted point (pi, wi(α)) to x.
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The weight functions will be defined in terms of the freezing time λi of each point pi.
The exact value chosen for λi will depend on our desired approximation guarantees and the
specifics of the algorithm. Once the freezing times are fixed, the weights are as follows.

wi(α) =
{

0 if α < λi√
α2 − λ2

i otherwise

The ball bi(α) centered at pi with weight wi(α) is

bi(α) = {x ∈ Rd | πi,α(x) ≤ α} = ball(pi, min{α, λi}).

This is why λi is called the freezing time; at scales α > λi, the Euclidean radius of a ball of
weighted radius α will not grow.

The following lemma shows how weighting the points according to the freezing time
guarantees that at all scales, there is always a point nearby that is sufficiently close and
sufficiently far from its freezing time. The proof can be found in the full version.

▶ Lemma 1. Let P ⊂ Rd be ordered according to a greedy permutation with insertion radii
r0 . . . ri−1. Let ε > 0 be any constant. For all j ∈ [1 : n], let the freezing times λj be chosen
so that λj ≥ 1+ε

ε rj. Then, for all k ∈ [1 : n] and all α ≥ 0, there exists i such that
λi ≥ (1 + ε)α, and
∥pi − pk∥ < εα.

In the special case of α = λk in the preceding lemma, ball(pk, λk) is completely covered
by ball(pi, (1 + ε)λk), where the point pi is not yet frozen at time (1 + ε)λk. For larger
values of α, there will always be a point pi to cover this ball. This lemma has two important
consequences. First, it implies that we will be able to remove or ignore the point pk after
time (1 + ε)λk. Second, it allows us to relate the offsets of P with the weighted offsets as
shown in the following lemma whose proof may be found in the full paper.

▶ Lemma 2 (Weighted Offset Interleaving). Let P ⊂ Rd be ordered according to a greedy
permutation with insertion radii r0 . . . ri−1. Let ε > 0 be any constant. For all j ∈ [1 : n], let
the freezing times λj be chosen so that λj ≥ 1+ε

ε rj . Then, for all α ≥ 0,P̂ α ⊆ P α ⊆ P̂ (1+ε)α.

2.5 Delaunay and Voronoi

Figure 2 The Voronoi diagram and its dual Delaunay triangulation.

Let P be a set of points in Rd. The Voronoi cell of a point q ∈ P is defined as

VorP (q) := {x ∈ Rd | ∥x − q∥ = d(x, P )}.

SoCG 2021



58:6 A Sparse Delaunay Filtration

For a subset of points S ⊆ P , we can define its Voronoi cell as

VorP (S) :=
⋂
q∈S

VorP (q).

The same definitions apply to weighted points. For a given α, the Voronoi cell of q is

VorP̂ (α)(q) := {x ∈ Rd | πq(x) = π(x, P̂ (α))}.

It is well-known that the Voronoi cells are polyhedra. The Voronoi diagram of P is defined
as the polyhedral complex composed of nonempty Voronoi cells VorP (S) for all S ⊆ P .

The Delaunay complex (also known with some nuances as the Delaunay triangulation,
tesselation, or mosaic) is the simplicial complex formed by the subsets S ⊆ P for which
VorP (S) is nonempty. The subsets are the simplices and the dimension of S is |S| − 1. We
are defining the Delaunay complex here as an abstract simplicial complex. In the special
case where all simplices have dimension at most d, the Delaunay complex will embed neatly
into Rd with the vertices embedded at the points of P and each simplex embedded as the
convex closure of its vertices. For the purposes of this paper we will not need the embedding
and thus will have no need for the usual general position conditions as would usually be
required for the geometric realization of the complex in Rd. In fact, we will explicitly
construct “degenerate” Delaunay complexes because the adjustment of weights over time
will necessarily pass through instants where higher dimensional simplices are present in the
Delaunay complex. These are the moments when a flip occurs. We will only require that at
most one flip occurs at a time.

2.6 The Kinetic View of Flips
Kinetic data structures [22] generalize the classic sweepline approach of Bentley and Ottmann.
The goal is to maintain some geometric structure as points move along trajectories. The
principal technique is to rewrite the geometric predicates defining the structure as functions
(usually polynomials) of time and then solving (finding roots) for the time when the predicate
will no longer hold. At that time, some combinatorial change is required. These changes are
stored in a priority queue, ordered by time.

Incremental Delaunay triangulation can be phrased as a kinetic data structures problem
if one understand the motion in d + 1 dimensions as a continuous change in the weight of the
point being inserted. This perspective is often abandoned because the precise ordering of the
flips is rarely important and is not necessary for correct computation (see Edelsbrunner [20]).
However, in our case, we want the precise order and time of the flips that occur, because
these inform the final filtration. Also, we will be adding multiple points at once, so the order
is important.

A similar approach was used by Miller and Sheehy [30] in an output-sensitive algorithm
for computing Delaunay triangulations. In that paper, it was observed that the predicate
polynomials are linear for the case where the points are partitioned into two sets, one with
weight zero and one with squared weight varying linearly in time.

2.7 Clipping the Voronoi Diagram
The clipped Voronoi cell is the intersection of a Voronoi cell and a ball. Let P̂ be a weighted
point set with weights varying in time as above. Then, for each pi ∈ P̂ and each α ≥ 0 there
is a ball

bi(α) := ball(pi, min{λi, α}).
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Figure 3 The clipped Voronoi cells exactly cover the offsets. In the last frame, we illustrate how
the addition of extra points may not change the offsets or the Delaunay filtration. These extra
points are used in Section 4 to keep the complexity linear.

I II III IV V

V

IV

III

II

I

Figure 4 For two points, the lifted, clipped Voronoi cells are shown from the side. The clipped
Voronoi diagrams at five different scales are illustrated. Note that at some scale, the left ball ceases
growing. Then, it is overtaken by the cell of the right point.

Specifically, for pi ∈ P , we define the clipped Voronoi cell of pi as

V α
i := VorP̂ (α)(pi) ∩ bi(α).

The Delaunay complex at scale α is the subcomplex of the Delaunay complex defined by
using the clipped Voronoi cells instead of the full Voronoi cells. That is,

Dα := {σ ⊆ P |
⋂

pi∈σ

V α
i ̸= ∅}.

By defining the weights as above, we guarantee that for all scales α ≥ (1 + ε)λk, the
clipped Voronoi cell V α

k will be empty. This is a direct consequence of Lemma 1, but we give
the formal statement below and the proof in the full version for completeness. (See Fig. 4.)

▶ Lemma 3. Let P ⊂ Rd be ordered according to a greedy permutation with insertion radii
r0 . . . ri−1. Let ε > 0 be any constant. For all j ∈ [1 : n], let the freezing times λj be chosen
so that λj ≥ 1+ε

ε rj. Then, for all k ∈ [1 : n] and all α > (1 + ε)λk, we have V α
k = ∅.

SoCG 2021
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This is how some points will cease to impact the filtration at larger scales. In the next
section, we will see how to simulate the removal of vertices whose clipped Voronoi cells are
empty. Before we give that construction, we will relate the clipped Voronoi diagram to the
(weighted) offsets. For completeness, we include a proof of this well-known fact (see for
example Edelsbrunner [15]) in the full version.

▶ Lemma 4. Let P ⊂ Rd be ordered according to a greedy permutation with insertion radii
r0 . . . ri−1. Let ε > 0 be any constant. For all j ∈ [1 : n], let the freezing times λj be chosen
so that

λj ≥ 1 + ε

ε
rj .

Then, for all α ≥ 0,

P̂ α =
⋃

i∈[n]

V α
i .

2.8 Extending Voronoi and Delaunay in Time and Space
Given that we will be considering weighted point sets in which the weights of the points vary
in time, it is useful to give a concrete geometric structure that captures the evolution of the
Voronoi diagram and the Delaunay triangulation.

Define

P̂ α
+ := {(x, γ) ∈ Rd × [0, α] | x ∈ P̂ γ}.

This filtration has the property that for any α ≥ 0, there is a natural homotopy equivalence
m : P̂ α

+ → P̂ α defined by the projection m(x, γ) = x. This follows from the fact that P̂ α

only grows with increasing α and thus the fibers of m are simply connected (line segments).
We can similarly embed the clipped Voronoi cells in Rd+1 by defining

V α
+i := {(x, γ) ∈ Rd × [0, α] | x ∈ V γ

i }.

The collection of these sets is

V α
+ := {V α

+i}i∈[n].

The extended Delaunay complex is defined as

Dα
+ := {σ ⊆ P |

⋂
pi∈σ

V α
+i ̸= ∅}.

So, Dα
+ contains every simplex that appears in any Delaunay complex Dγ for any γ ∈ [0, α].

2.9 Nerves
Construction of the Delaunay triangulation from the Voronoi cells is an example of a nerve.
More generally, given a collection U of sets, we define a simplicial complex

Nrv(U) := {σ ⊂ U |
⋂

S∈σ

S ̸= ∅}.

For the Delaunay triangulation, if there is a nonempty intersection of Voronoi cells, we
identify the corresponding simplex with the set of points defining those cells. So, Dα is
(isomorphic to) the nerve of V α and Dα

+ is the nerve of V α
+ .
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The collection U is called a cover, and the set W =
⋃

S∈U S is the set that U covers. A
cover is a good cover if the intersections of elements are all either empty or contractible. In
the case of the Voronoi diagram as well as the clipped Voronoi diagram, the convexity of the
cells guarantees that the cover is good.

The Nerve Theorem says that the nerve of a good cover is homotopy equivalent to the
union, so the homology of the nerve matches the homology of the union. In the case of the
clipped Voronoi diagram, the Nerve Theorem implies that the Delaunay complex at scale
α is equivalent in homology to the weighted offsets. This observation was one of the main
ideas that drove the development of persistent homology.

If, instead of a collection of sets, we have a collection of filtrations, we can define their
nerve as a filtered simplicial complex. For example, if we have filtrations {(Uα

0 ), . . . , (Uα
k−1)},

then for each α we can define the cover Uα = {Uα
0 , . . . , Uα

k−1} of W α =
⋃

i∈[k] Uα
i and the

nerve Nα = Nrv(Uα). Then, we have a new filtration (W α) and a filtered simplicial complex
(Nα). The Persistent Nerve Lemma [8] implies that if Uα is a good cover for all α, then the
persistence diagrams of (Nα) and (W α) are identical.

3 The Sparse Delaunay Filtration

In this section, we will prove that our sparse Delaunay filtration Dgm(Dα
+) is a good

approximation to Dgm(P α). In Section 2, we established the geometric lemmas that will
allow us to relate Dgm(P α) with Dgm(

⋃
V α

+ ). We will use the Persistent Nerve Lemma to
show that Dgm(

⋃
V α

+ ) = Dgm(Dα
+), but it will require showing that lifted clipped Voronoi

cells form a good cover. Although the slices of these cells are convex at any fixed α, they are
not themselves convex as can be seen in the example in Fig. 4. In this section, we will show
despite having non-convex sets, V α

+ is a good filtered cover. The proof will depend on our
careful choice of weights.

3.1 Adding Points in Waves

To define the weight functions, it suffices to establish the freezing times. The specific choice
of the freezing times impacts the size (larger freezing times yields a larger filtration), but
also the correctness (the cover must be good). For many of the preceding lemmas, it was
necessary to choose freezing times so that

λi ≥ 1 + ε

ε
ri,

where ri is the insertion radius of pi in a greedy ordering of the input set P . Recall that ε is
the user chosen parameter that will define the accuracy of our approximation.

We will satisfy this requirement by grouping points according to their insertion radius,
rounding up to the nearest power of 1 + ε. All the points in a group will have the same
freezing time. Formally, we set

λi := (1 + ε)⌈log1+ε( 1+ε
ε ri)⌉.

Rounding the weights simplifies the proofs, but it is an open question as to whether it is
necessary for the correctness of the construction.

The filtration (Dα
+) defined with these weight functions on a greedy permutation is The

Sparse Delaunay Filtration.

SoCG 2021
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3.2 Monotonicity

The first step in showing that V α
+ is a good filtered cover is to show that every Delaunay

simplex in Dα appears and disappears at most once. There are two ways that a simplex can
be removed at time α. First, it may be that its Voronoi cell becomes empty and therefore it
is removed from the Delaunay triangulation entirely. This is the standard case to analyze
in flip-based Delaunay computation. Second, it may be that only the clipped Voronoi cell
becomes empty. In this case, we must show that it remains empty for the rest of the filtration.

The challenge is that the lifted Voronoi cells are not convex. Aurenhammer et al. [1]
showed that this monotonicity does not hold for a related set of weight functions. That
paper addressed the problem of computing the Voronoi diagram of parallel halflines and
showed that the slices perpendicular to the halflines are weighted Voronoi diagrams. Similar
to the current paper, they construct a d + 1-dimensional decomposition by sweeping through
d-dimensional slices. That paper gives an example attributed to Peter Widmayer’s research
group in which a particular triangle would be flipped out and later flipped back in. Such a
non-monotone example highlights the need to be careful in choosing the weights.

▶ Lemma 5. If σ ∈ Dα and σ ∈ Dβ, then σ ∈ Dγ for all γ ∈ [α, β].

Proof. Let λσ = minpi∈σ λi. Lemma 3 implies that no point pi appears in Dγ for γ > (1+ε)λi.
So, it must be that β ≤ (1 + ε)λσ. If α < λσ, the points pi of σ all have weight wi(γ) = 0
for all γ ∈ [α, λσ]. In that case, the nonempty set

⋂
pi∈σ V γ

i is a subset of
⋂

pi∈σ V λσ
i and so,

σ ∈ Dγ . So, it will suffice to prove the lemma for the case where α and β are in the interval
[λσ, (1 + ε)λσ].

For any γ ∈ [α, β], let t = γ2−α2

β2−α2 .
This choice implies that γ =

√
(1 − t)α2 + tβ2.

By rounding the freezing times to powers of (1 + ε), there are no freezing times in the
open interval (α, β). In particular, wi(α) = 0 iff wi(β) = 0. So, for all pi ∈ P , we have

wi(γ)2 = (1 − t)wi(α)2 + twi(β)2.

Let x be a point in the intersection
⋂

pi∈σ V α
i and let y be a point in

⋂
pi∈σ V β

i . These
points witness the existence of σ in Dα and Dβ respectively. We will show that z = (1−t)x+ty

is in
⋂

pi∈σ V γ
i .

Let pi ∈ σ be chosen arbitrarily. Using the convexity of the squared distance to a point,

πi,γ(z)2 = ∥pi − z∥2 + wi(γ)2

= ∥pi − z∥2 + (1 − t)wi(α)2 + twi(β)2

≤ (1 − t)∥pi − x∥2 + t∥pi − y∥ + (1 − t)wi(α)2 + twi(β)2

= (1 − t)πi,α(x) + tπiβ
(y)

≤ (1 − t)α2 + tβ2

= γ.

So, z ∈ bi(γ).
Let pj ∈ P be any point. Because x ∈ VorP̂ (α)(σ) and y ∈ VorP̂ (β)(σ), we know that

πj,α(x)2 ≥ πi,α(x)2, and πj,β(y)2 ≥ πi,β(y)2.
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So, by the definition of the power distance,

πj,γ(z)2 − πi,γ(z)2 = ∥pj − z∥2 − ∥pi − z∥2 + wj(γ)2 − wi(γ)2

= ∥pj∥2 − ∥pi∥2 − 2z⊤(pj − pi) + wj(γ)2 − wi(γ)2

= (1 − t)(πj,α(x) − πi,α(x)) + t(πj,β(y) − πi,β(y))
≥ 0.

So, for all pi ∈ σ and pj ∈ P , we have πi,γ(z) ≤ πj,γ(z) and thus z ∈ VorP̂ (γ)(pi). We
have shown z ∈ bγ

i and z ∈ VorP̂ (γ)(pi), and therefore, z ∈ bγ
i ∩ VorP̂ (γ)(pi) = V γ

i . As this
holds for all pi ∈ σ, we have a point z ∈

⋂
pi∈σ V γ

i , and thus, σ ∈ Dγ as desired. ◀

3.3 A Good Filtered Cover
We can now prove that the lifted Voronoi cells form a good filtered cover.

▶ Lemma 6. Let ε > 0 be any constant. Let V α
+ be the lifted Voronoi cells whose nerve is

the ε-Sparse Delaunay Filtration for P ⊂ Rd. Then, (V α
+ ) is a good filtered cover of (P̂ α).

Proof. Fix any α ≥ 0. Let σ ∈ Nrv(V α
+ ) be any simplex. We will show that the intersection

of the lifted, clipped Voronoi cells {V α
i | pi ∈ σ} is contractible.

In each d-dimensional slice, the clipped Voronoi cells V α
i are convex, so their intersection

is convex. We can deformation retract the nonempty clipped Voronoi cells in each slice to
the orthocenter, i.e., the point in the cell that minimizes the maximum weighted distance
to the points of σ. The cells change continuously in time and so does the orthocenter of
the simplex. The retractions in each slice will be continuous as a retraction in Rd+1. By
Lemma 5 the collection of orthocenters in the slices will form a connected path and thus are
contractible. ◀

▶ Theorem 7. Let ε > 0 be any constant. Let (Dα
+) be the ε-Sparse Delaunay Filtration for

P ⊂ Rd. Then, Dgm(Dα
+) is a (1 + ε)-approximation to Dgm(P α).

Proof. By Lemma 6, the lifted clipped Voronoi cells {V α
i } form a good cover of P̂ α for all α

and therefore, by the Persistent Nerve Lemma,

Dgm(Dα) = Dgm(P̂ α).

Lemma 2 gives an interleaving of persistence modules (see [7]) so that Dgm(P̂ α) is a
(1 + ε)-approximation to Dgm(P α). Combining these facts, we get that Dgm(Dα) is a
(1 + ε)-approximation to Dgm(P α). ◀

3.4 Size Analysis
In general, the Delaunay complex on n points (in general position) may have O(n⌈d/2⌉)
simplices [32]. There are several special cases where it is known that the Delaunay complex
has size O(n). Most such cases are based on input models that guarantee the points are
spaced according to some Poisson process. The analysis invariably depends on showing that
the complex is everywhere locally sparse in the sense that every vertex participates in at
most a constant number of simplices. It will not be hard to show that a similar bound holds
for every slice and, in particular, every slice has linear size (Lemma 8). Then, we will show
that the total number of simplices (the union of all slices) also has linear size (Theorem 9).

▶ Lemma 8. For all α ≥ 0, every vertex in the weighted Delaunay complex Dα has at most
O

(( 1+ε
ε

)d
)

neighbors.
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Proof. Let p be any point in P . Let Q = {q0, . . . , qk−1} be the neighbors of p in Dα. Every
edge of Dα has length at most 2α. By Lemma 3, every qi must have a freezing time at least

α
1+ε and thus, an insertion radius of at least εα

(1+ε)3 . So, the points of Q are contained in
ball(p, 2α) and are all pairwise εα

(1+ε)3 -separated. By comparing the volumes of the k disjoint
empty balls of radius εα

2(1+ε)3 around the points of Q to the volume of the ball of radius that(
2 + ε

(1+ε)3

)
α that contains them, we get that k = O

(( 1+ε
ε

)d
)

. ◀

▶ Theorem 9. Let P be a set of n points in Rd with greedy weights. Let ε ≥ 0 be a constant.
The total size of (Dα) is O(n).

Proof. The proof follows the exact pattern of previous work on sparse filtrations (see [35, 6]
for more a more detailed analysis). Each simplex of the filtration is charged to the vertex
with the smallest insertion radius. By a packing volume argument analogous to that in
Lemma 8, we see that no vertex is charged for more than a constant number of simplices in
the final filtration. Thus the total size is O(n) as desired. ◀

4 Efficient Construction

The main challenge to efficiently constructing the Sparse Delaunay Filtration is to avoid
constructing the entire Delaunay complex. Doing so could easily negate any efficiency gains
from sparsification. In this section, we will describe an approach based on Voronoi refinement
that uses extra points called Steiner points to keep the complexity of the Delaunay complex
linear in the number of points. None of the Steiner points will appear in the output filtration.
They serve only to fill in large gaps that could potentially create a superlinear number of
Delaunay simplices.

Earlier work in approximating the persistence diagram of the distance to Euclidean points
also used Steiner points [25, 33], but in that case, the Steiner points were an essential part of
the filtration. Steiner points and Voronoi refinement have also been used in output-sensitive
algorithms to construct Dα [36]. In that case, the output could still be superlinear in the
input size depending on the arrangement of the points and the choice of α.

Flip-based algorithms for computing the Delaunay triangulation start the insertion of
a new point by flipping a new vertex in with a (1, d + 1)-flip. This requires that the new
point is contained in one of the simplices of the current triangulation. If we ignore or discard
simplices in the Delaunay triangulation that do not appear in the subcomplex Dα, then we
cannot necessarily flip in new points, because we could have discarded a simplex containing
the new point. If we maintain the full Delaunay triangulation at all times, we might store
too many simplices. To balance between the two, we use Steiner point to give a sparse
representation of the regions far from the input points at a given scale. In Section 4.1, we
explain how these Steiner points are chosen. Then, in Section 4.2, we show why these Steiner
points do not affect the output. The full algorithm is then presented in Section 4.3, and a
detailed analysis is available in the full version.

4.1 Voronoi Refinement
Voronoi cells are polyhedra whose vertices we will call corners to distinguish them from the
input vertices. We will assume that the affine closure of the points is d-dimensional, so every
Voronoi cell has at least one corner. Let P ⊂ Rd and let y ∈ P be any point. Let z be the
nearest neighbor of y in P , and let x be the corner of VorP (y) farthest from y. The aspect of
VorP (y) is

aspect(y) := ∥y − x∥
∥y − z∥

.
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The point set P is τ -well-spaced if aspect(y) < τ for all y ∈ P . There are many advantages
to well-spaced points when constructing Delaunay triangulations. A major advantage is that
the number of simplices incident to any vertex will be at most a constant. So, the total
complexity of the Delaunay triangulation of n well-spaced points is at most O(n).

Voronoi refinement is a variant of Delaunay refinement [10, 31] and is commonly used in
mesh generation (see the books by Edelsbrunner [16] and Cheng et al. [9] for more details).
The corners of a Voronoi cell are the circumcenters of their dual Delaunay simplices. The
basic Voronoi refinement algorithm is to add the farthest corner of any cell VorP (y) for which
aspect(y) > τ . Repeating this process eventually produces a τ -well-spaced set of points.
Moreover, the total number of points in the output is asymptotically optimal [31, 34], i.e.,
the size is within a constant factor of any τ -well-spaced superset of P .

4.2 Why the Steiner points don’t appear in the filtration
Every edge in Dα is induced by the intersection of two clipped Voronoi cells, so the length
of every edge is at most 2α. The following lemma is the key to guarantee that the Sparse
Delaunay Filtration we construct contains no Steiner points as vertices. It shows that the
Steiner points are always more than 2α away from any other points, and therefore, there can
be no edges incident to a Steiner point in Dα.

▶ Lemma 10. Let ε and α be nonnegative real numbers. Let P and S be subsets of Rd such
that no point of S is within 2α and no point of P is within εα of any other point of P ∪ S.
If S′ is formed by adding Steiner points to S at the far corners of Voronoi cells with aspect
greater than 2

ε , then no point of S′ will be within 2α of any other point of P ∪ S′.

Proof. It suffices to show that the spacing condition holds after the insertion of each Steiner
point x. Let y be the point whose Voronoi cell was refined by the addition of x and let z be
the nearest neighbor of y. Then, ∥y − z∥ ≥ εα and the aspect of the cell is bounded as

2
ε

<
∥y − x∥
∥y − z∥

≤ ∥y − x∥
εα

.

It follows that ∥y − x∥ > 2α. Because x was in the Voronoi cell of y, it follows that the
distance to any other point is also greater than 2α. ◀

4.3 The Full Algorithm
In the preprocessing phase of the algorithm, we compute a greedy permutation of P . During
this computation, we also compute for each pi, the nearest predecessor in the ordering as
well as its distance, the insertion radius ri. The radius will be used to establish the weights
and define the waves. The nearest predecessor will be used for point location when inserting
new points.

The algorithm then proceeds by constructing the filtration one wave at a time in order of
the greedy permutation. That is, for wave w, the filtration is constructed for the interval
[(1 + ε)w, (1 + ε)w+1]. Moreover, as the construction increases the density of points as it goes,
it also decreases the radius, so the simplices of the filtration are discovered in reverse order.

At the start of each wave, some set U of points have already been inserted, and some set
F of points will be inserted into to the Delaunay triangulation. The points U are unfrozen
throughout the wave so their weights will always be zero. The points F are frozen at the
start of the wave interval, so their weights will vary equally in time. We start the wave by
locating the Delaunay simplices containing each of the points of F . Each pair of a point and
the d-simplex that contains it forms a (d + 1)-simplex. We compute the flip time for each of
these simplices and store the flip in the event queue.
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Processing the flips only requires that we remove the next flip from the event queue. We
check that the simplices are still present in the complex, i.e., that no other flip removed some
of its subsimplices. Then, we execute the flip, updating the Delaunay triangulation, and
relocating uninserted points of F that were in the removed simplices.

For each flip, we update the birth times of all simplices that may have been affected. That
is, if S is the set of d + 2 points involved in the flip at scale α, we will process each simplex
σ ⊆ S starting with the highest dimensions. The tentative birth time of every simplex is
computed assuming that the structure of the triangulation will not change. A simplex is
finalized when we add it to the filtration. A simplex is discarded if we have established that
it will never appear in the filtration. Discarded simplices do not need to be updated in
this step. For σ = S, set birth(S) = α and either finalize it if radius(S) ≤ α, or discard it
otherwise. For simplices σ removed by the flip, either finalize it if birth(σ) ≥ α or discard
it otherwise. For all other simplices, if the newly computed birth time is at most α, then
update birth(σ) and finalize σ otherwise.

At the end of each wave, we perform a Voronoi refinement step, adding Steiner points
until the points are 2

ε -well-spaced. That is, while any Voronoi cell has aspect greater than 2
ε ,

we add its farthest corner. As a consequence of Lemma 10, no changes to the filtration are
made at this time.

The overall running time is just the cost of computing a greedy permutation, doing
an incremental Delaunay triangulation with sparse refinement, and performing a constant
amount of extra work per flip. These are relatively standard analyses, so in the interest of
space, they have been relegated to the full version.

5 Conclusion

We have presented a linear size Delaunay filtration for n points in Rd as well an efficient
algorithm to compute it.

It is also relevant to note that this algorithm also can be used to compute a well-spaced set
of points. That is, if one keeps the final Delaunay triangulation of the input plus the Steiner
points, the result will be well-spaced. Performing a more aggressive Voronoi refinement to
achieve a better spacing constant then resembles a standard Voronoi/Delaunay refinement
starting from a well-spaced point set. This is substantially simpler than previous algorithms
to do Sparse Voronoi Refinement [24, 29] because it obviates any need to “snap” Steiner
points to nearby input points. It is not obvious whether the tradeoff between a size increase
from the difference in the spacing constant offsets the improvements from simplified point
location.
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