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Abstract
The space of persistence diagrams under bottleneck distance is known to have infinite doubling
dimension. Because many metric search algorithms and data structures have bounds that depend on
the dimension of the search space, the high-dimensionality makes it difficult to analyze and compare
asymptotic running times of metric search algorithms on this space.

We introduce the notion of nearly-doubling metrics, those that are Gromov-Hausdorff close to
metric spaces of bounded doubling dimension and prove that bounded k-point persistence diagrams
are nearly-doubling. This allows us to prove that in some ways, persistence diagrams can be expected
to behave like a doubling metric space. We prove our results in great generality, studying a large
class of quotient metrics (of which the persistence plane is just one example). We also prove bounds
on the dimension of the k-point bottleneck space over such metrics.

The notion of being nearly-doubling in this Gromov-Hausdorff sense is likely of more general
interest. Some algorithms that have a dependence on the dimension can be analyzed in terms of the
dimension of the nearby metric rather than that of the metric itself. We give a specific example of
this phenomenon by analyzing an algorithm to compute metric nets, a useful operation on persistence
diagrams.
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1 Introduction

A persistence diagram is a topological summary commonly used in topological data analysis
(TDA). Ever since their introduction, persistence diagrams have been a popular tool to
compare the shapes of point clouds, metric spaces, and real-valued functions.

A significant advantage of persistence diagrams over many other topological invariants is
that they come equipped with a natural metric, the bottleneck distance, and thus topological
features are rendered not only qualitative, but also quantitative. This opens the possibility
of doing metric analysis on persistence diagrams, such as (approximate) nearest neighbor
search or range search.

Many metric proximity search algorithms and data structures have asymptotic running
time bounds in terms of the doubling dimension of the search space [6, 10]. The metric
space of persistence diagrams with the bottleneck distance is known to have infinite doubling
dimension [8], making it unclear whether one ought to apply standard data structures
such as cover trees [1] or net trees [10] to search in this space. Although the space of all
persistence diagrams is infinite-dimensional, all hope is not lost. In this paper, we show
that the bottleneck space of bounded persistence diagram (i.e., those whose points are in
a bounded region) is close in a Gromov-Hausdorff sense to a finite-dimensional space. Our
approach is to consider a very general class of quotient metrics generalizing the persistence
plane and then bound the doubling dimension of bottleneck distances over such metrics. We
also show that for some algorithms whose running time depends on the doubling dimension,
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60:2 Nearly-Doubling Spaces of Persistence Diagrams

it can sometimes suffice to be close to a low-dimensional metric in order to achieve similar
running times. Specifically, we show how to construct nets efficiently in these so-called
nearly-doubling metrics.

As a first attempt at explaining why the bottleneck space of peristence diagrams appears
to behave like a low-dimensional space in some experiments (see [16]), one might hope that
“real-world” persistence diagrams naturally live in a low-dimensional subspace. Certainly,
there are cases where data naturally live on a low-dimensional manifold and zooming in, one
sees only the low-dimensional structure. However, this is not true of persistence diagrams.
Zooming in can increase rather than decrease the apparent dimension. As a result, the
key idea in this paper is not to look for a low-dimensional subspace, but rather a different
low-dimensional space that is provably Gromov-Hausdorff close.

2 Related Work

There are numerous examples of metric search algorithms where search performance depends
on the underlying space’s doubling dimension. The performance guarantees of navigating
nets in [14] depend on an exponential function of the doubling dimension. The same is true
for Clarkson’s sb data structure [6] and Har-Peled and Mendel’s net-trees [10].

The bottleneck matching data structure of Efrat et al. [7] runs in time O(n1.5 logd n) in
Rd using ℓ∞ distance. Kerber et al. [12] apply the geometric intuition of Efrat et al. [7] to the
space of persistence diagrams and give the current state-of-the-art algorithm for computing
the bottleneck distance between persistence diagrams. The running time is O(n1.5 log n).
Kerber and Nigmetov also acknowledge the high dimensionality of some spaces as a problem
when they build spanners that minimize distance computations for such spaces [13]. In their
work, they explicitly mention persistence diagrams as a motivating example of an expensive
to compute metric, but their theoretical results only apply to doubling metrics. Nigmetov [16]
gave many experimental results showing that methods geared towards doubling spaces still
work well on persistence diagrams. In this paper, we give some indication for why similar
results could apply in the (non-doubling) setting of persistence diagrams.

Fasy et al. explore the infinite doubling dimension of persistence diagrams in [8] with a
nearest neighbor data structure. They replace the bounded persistence plane with a grid to
reduce the doubling dimension of the space of bounded persistence diagrams.

Our approach is based on the fact that the persistence plane is a quotient of the ℓ∞ plane
modulo the diagonal. This approach was first defined by Bubenik and Elchesen [2, 3]. They
use this definition of the persistence plane in terms of quotient metrics to prove results on
more general spaces of persistence diagrams.

Choudhary and Kerber [5] introduce the idea of a t-restricted doubling dimension where
the dimension is computed only by focusing on balls of radius at most t. The notion of
nearly-doubling metrics we introduce in this paper takes the opposite approach, capturing
the doubling behavior at sufficiently large scales. This is more appropriate for persistence
diagrams, because the high-dimensionality is present at arbitrarily small scales.

Huang et al. [11] present a similar result for clustering problems where they compute
weighted approximations of subsets of doubling metrics in polynomial time.
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3 Definitions

3.1 Metric Spaces
A metric space, (X, d) is a set X and a metric d. This is the default metric space used in
this paper. The distance between a ∈ X and a set Y is given by d(x, Y ) := infb∈Y d(a, b).
The diameter of a set X is diam(X) = supa,b∈X d(a, b). An r-ball centered at a, denoted by
B(a, r), is the set of all points in X within distance at most r from a. The spread of a finite
metric space is the ratio of its diameter to its smallest pairwise distance.

A collection of sets Y covers X if the union of the sets in Y contains X. An r-cover
is a collection of sets of diameter at most 2r that covers X. A special case of an r-cover
is a cover by metric balls of radius r. A minimum r-cover is an r-cover of X of minimum
cardinality. The covering number of X is Nr(X) = |Y | where Y is a minimum r-cover of X.
The r-metric entropy of X is defined as Hr(X) = log2 Nr(X).

The doubling dimension of X, denoted dim(X), is the minimum number d such that
every subset S ⊆ X can be covered by 2d sets of half the diameter of S. As observed in
the original work on doubling dimension [14], a ball in a d-dimensional metric space can be
covered with at most 22d balls of half the radius.1 If dim(X) is finite, then X is a doubling
metric. Throughout this paper, all mentions of dimension refer to the doubling dimension.

3.2 Packings and Coverings
A set Xr ⊂ X is said to be r-dense or an r-sample of X if X ⊂

⋃
x∈Xr

B(x, r). A set Z ⊂ X

is said to be r-separated or an r-packing of X if d(zi, zj) > r for all distinct zi, zj ∈ Z. If
Z ⊂ X is both, r-dense and r-separated, then Z is an r-net of X.

The packing number of a set X, given by Mr(X), is the size of the maximum r-packing
of X. The sampling number of X, given by Sr(X), is the size of the minimum r-sampling of
X. There is a well-known relationship between the packing and covering numbers of a set X

known from [15]. We present a proof for completeness.

▶ Lemma 1 (Packing-Covering Duality). If X is a metric set and r is some distance, then,

M2r(X) ≤ Nr(X) ≤ Mr(X).

Proof. For the second inequality, let P be a maximum r-packing of X and S =
⋃

p∈P B(p, r)
be such that S is not an r-cover of X. Thus, there exists y ∈ X such that d(y, p) > r for all
p ∈ P . Therefore, P is not a maximum r-packing of X and so Nr(X) ≤ Mr(X).

For the first inequality, let Y = {Y1, . . . YN } be an r-cover of X of size Nr(X). Assume
there exists P ′, a 2r-packing of X, of size Nr(X) + 1. By the pigeonhole principle there
exists Yi such that two elements of P ′, say p, p′, are in Yi because Y is an r-cover. Thus,
d(p, p′) ≤ diam(Yi) ≤ 2r. Therefore, P ′ is not a 2ε-packing and so M2r(X) ≤ Nr(X). ◀

A similar lemma holds for the covering number and sampling number.

▶ Lemma 2. If X is a metric set and r is some distance, then

S2r(X) ≤ Nr(X) ≤ Sr(X).

1 In some prior work, the definition of doubling dimension is given in terms of coverage of metric balls
rather than general covers. That definition suffers from several drawbacks; most notably, it is not
monotone with respect to subsets.
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Lemma 2 gives us a relationship between the doubling dimension computed using centered
and uncentered balls of diameter 2r.

Krauthgamer and Lee [14] say that the doubling dimension computed by covering a
metric ball with balls of half the radius is a 2-approximation of the actual doubling dimension.
The following lemma shows that the converse of that statement is also true.

▶ Lemma 3. Let X be metric space. If, for any r > 0, there exists an r/2-sample of a ball
B(x, r) in X of cardinality 2ρ, then dim(X) ≤ 2ρ.

Proof. Let Z ⊂ X be a set of diameter 2r. Then Z ⊆ B(z, 2r) for any z ∈ Z. So there
exists Z ′, an r-sample of B(z, 2r), of cardinality 2ρ. Moreover, for every z′ ∈ Z ′ there exists
an r/2-sample of cardinality 2ρ of a ball B(z′, r). Therefore, there exists an r/2-sample of Z

of cardinality at most 22ρ. Thus, from Lemma 2 there exists an r/2-cover of Z of cardinality
at most 22ρ and so dim(X) ≤ 2ρ. ◀

Krauthgamer and Lee [14] prove that an r-packing of an O(r)-ball has at most 2O(d)

points. A version of this lemma with more precise constants is the following.

▶ Lemma 4 (Standard Packing Lemma). If X is a metric space of dimension d and Z ⊂ B(x, r)
for some x ∈ X is an λ-packing then |Z| ≤ (2∆)d where ∆ ≤ 2r

λ is the spread of Z.

Let X be a metric space and let Y be a subspace. The quotient metric space (X/Y, dX/Y )
is defined so that dX/Y ([a], [b]) := min{d(a, b), d(a, Y ) + d(b, Y )}. There also exists a
surjective quotient map, q : X → X/Y such that q(x) = [x].

3.3 Bottleneck Distance
Let X be a metric space and let A and B be two finite subsets of the same cardinality. A
matching between A and B is bijection m : A → B. The bottleneck of a matching m is

max
a∈A

d(a, m(a)).

The bottleneck distance between A and B is the minimum of the bottleneck over all possible
matchings between A and B.

3.4 The Persistence Plane
The persistence plane P is the quotient (R2, ℓ∞) modulo the diagonal {(x, x) | x ∈ R}. The
point associated with the equivalence class of the diagonal in the persistence plane is called
the diagonal point. The dimension of P is infinite as shown in Figure 1a. This means that a
quotient of two doubling metric spaces can be infinite-dimensional.

A persistence diagram is a multiset of points in the persistence plane. The natural metric
on persistence diagrams is the bottleneck distance. To ensure diagrams A and B have the
same cardinality, we augment A with |B| copies of the diagonal point and we augment B

with |A| copies of the diagonal point. Then the bottleneck distance for persistence diagrams
is the bottleneck distance between the augmented diagrams.

Treating the persistence plane as a quotient metric is due to Bubenik and Elchesen. [2].
Although this perspective is nonstandard, it provides several significant benefits. It simplifies
algorithms for computing bottleneck distance, because having a single “point” representing
the entire diagonal allows one to more easily perform augmentation compared to standard
approaches [12]. It also simplifies sketching [17], in which one uses an approximate persistence
diagram that has fewer distinct points with multiplicity.
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(a) The Persistence Plane.

b

(b) Bottleneck Matching.

Figure 1 (a) shows why the persistence plane has infinite doubling dimension. A ball of radius r

centered at the diagonal would contain infinitely many points at distance r from the diagonal but
a ball of radius r/2 centered off the diagonal can cover only one of them. (b) shows a bottleneck
matching between two persistence diagrams.

3.5 Gromov-Hausdorff Distance
Given compact sets A and B in a metric space X, the Hausdorff distance between them is

dH(A, B) = max{max
a∈A

min
b∈B

d(a, b), max
b∈B

min
a∈A

d(a, b)}.

For metric spaces (P, dP ) and (Q, dQ), a correspondence between P and Q is a relation
R ⊆ P × Q such that for its canonical projections on P and Q, we have πP (R) = P and
πQ(R) = Q respectively. The distortion of R is defined as

distort(R) := sup
(p1,q1),(p2,q2)∈R

|dP (p1, p2) − dQ(q1, q2)|.

The Gromov-Hausdorff distance, dGH , is a metric on compact metric spaces [9] defined as

dGH(P, Q) := 1
2 inf{distort(R) | R ⊆ P × Q is a correspondence}.

In this paper we say two metric spaces are ε-close to mean that the Gromov-Hausdorff
distance between them is at most ε. The Gromov-Hausdorff distance is a generalization of the
Hausdorff distance in the sense that if P and Q are subsets of a common metric space, then
their Gromov-Hausdorff distance is bounded by their Hausdorff distance. So if the Hausdorff
distance between two subspaces of a metric space is bounded, the Gromov-Hausdorff distance
between them is also bounded.

4 ε-Close Quotient Metric Spaces

A quotient metric space X/Y can have very high (or infinite) dimension even if X and Y are
low-dimensional. A perfect example of this phenomenon is the persistence plane, which has
infinite dimension despite being the quotient of a 2-dimensional space by a 1-dimensional

SoCG 2022



60:6 Nearly-Doubling Spaces of Persistence Diagrams

subspace. In this section, we show how to approximate a quotient space with a lower
dimensional quotient space. We first present a lemma on the dimension of a quotient of a
doubling metric modulo a finite subset.

▶ Lemma 5. Let X be a d-dimensional metric space. If Y ⊂ X is finite, then

dim(X/Y ) ≤ d + log2 |Y |.

Proof. Let S ⊆ X/Y be such that diam(S) = 2ε. Let q : X → X/Y be the quotient map.
There exists a subset S′ ⊆ X such that q(S′) = S. For y ∈ Y , define the Voronoi cell of y

restricted to S′ to be

Vor|S′(y) := {x ∈ S′ | d(x, y) = d(x, Y )}.

Then, for each y ∈ Y , we have

diam(Vor|S′(y)) := sup
a,b∈Vor|S′ (y)

d(a, b)

≤ sup
a,b∈Vor|S′ (y)

min{d(a, b), d(a, y) + d(b, y)}

= sup
a,b∈Vor|S′ (y)

min{d(a, b), d(a, Y ) + d(b, Y )}

= sup
a,b∈Vor|S′ (y)

dX/Y (q(a), q(b))

≤ sup
a,b∈S′

dX/Y (q(a), q(b))

= 2ε

So, Vor|S′(y) is a set with diameter 2ε, and, by the definition of doubling dimension, has
an ε/2-cover of size at most 2d. Let C be the union of these covers for all y ∈ Y . Then C

will ε/2-cover S′ in X. Distances only decrease in the quotient, so the sets {q(U) | U ∈ C}
will ε/2-cover S in X/Y . So, we have an ε/2-cover of S of size at most |Y |2d and thus,

dim(X/Y ) ≤ log2(|Y |2d) = d + log2 |Y |. ◀

▶ Theorem 6. Let X and Y be compact metric spaces such that Y ⊆ X and dim(X) = d.
Then, X/Y is ε-close to a metric of dimension at most d + Hε/2(Y ).

Proof. Let Yε be a minimum ε-sample of Y . Then by Lemma 2, the cardinality of the min-
imum ε/2-cover of Y is at least |Yε|. Therefore, Hε/2(Y ) ≥ log |Yε|. So, Lemma 5 implies that
X/Yε has dimension at most d + Hε/2(Y ). It will suffice to show that dGH(X/Y, X/Yε) ≤ ε.

Let q : X → X/Y and qε : X → X/Yε denote the canonical quotient maps. Let
R ⊆ X/Y × X/Yε be the relation

R = {(q(x), qε(x)) | x ∈ X}.

Quotient maps are surjective, so the canonical projections of R satisfy πX/Y (R) = X/Y and
πX/Yε

(R) = X/Yε. Thus, R is a correspondence between X/Y and X/Yε.
Because Yε is an ε-sample of Y , for any a ∈ X, we have

d(a, Y ) ≤ d(a, Yε) ≤ d(a, Y ) + ε.
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It follows that

dX/Y (q(a), q(b)) = min{d(a, b), d(a, Y ) + d(b, Y )}
≤ min{d(a, b), d(a, Yε) + d(b, Yε)}
= dX/Yε

(qε(a), qε(b)),

and also,

dX/Yε
(qε(a), qε(b)) = min{d(a, b), d(a, Yε) + d(b, Yε)}

≤ min{d(a, b), d(a, Y ) + d(b, Y ) + 2ε}
≤ dX/Y (q(a), q(b)) + 2ε.

We can then bound the distortion of R as follows.

distort(R) = sup
a,b∈X

∣∣dX/Y (q(a), q(b)) − dX/Yε
(qε(a), qε(b))

∣∣ ≤ 2ε.

Because Y is compact, Yε is finite and X/Yε is the required ε-close space with doubling
dimension at most d + Hε/2(Y ). ◀

Note that the preceding theorem does not directly apply to the persistence plane because
it is not compact. We resolve this issue in Section 9 using bounded persistence diagrams.

5 Nearly-Doubling Metric Spaces

A metric space X is ε-nearly-doubling if there exists a doubling metric space Y such that
dGH(X, Y ) ≤ ε. In the previous section we showed that quotients of a doubling metric by a
compact set are ε-nearly-doubling with a dimension that depends on ε. In later sections,
we will show how bottleneck spaces are also nearly doubling with a focus on subsets of
persistence diagrams. Before proceeding to those results, we explain the sense in which
nearly doubling metrics share some of the properties of doubling metrics. In particular, they
can behave like doubling metrics down to scale O(ε). The most useful fact about doubling
metrics is that they satisfy the packing property described in Lemma 4. The following lemma
shows how to bound the size of packings of sufficiently large balls in nearly-doubling metrics.

▶ Lemma 7 (Nearly-Doubling Packing Lemma). Let r, λ ∈ R be such that λ < r. Let S be a
λ-packing of a ball B(c, r) in a metric space (X, d). Let (X ′, d′) be a d-dimensional metric

space such that dGH(X, X ′) ≤ ε. If λ = αε for some α > 2, then |X| ≤
(

2α+2
α−2 ∆

)d

where
∆ ≤ 2r

λ is the spread of S.

Proof. Because dGH(X, X ′) ≤ ε there exists a correspondence R between X and X ′ such
that |d(a, b) − d′(a′, b′)| ≤ 2ε for all (a, a′), (b, b′) ∈ R. For each x ∈ S, choose f(x) ∈ X ′ to
be a point such that (x, f(x)) ∈ R. Let S′ = {f(x) | x ∈ S}. For any a, b ∈ S,

|d(a, b) − d′(f(a), f(b))| ≤ 2ε.

Because S is a λ-packing, we have that for all a, b ∈ S,

d′(f(a), f(b)) ≥ d(a, b) − 2ε

≥ λ − 2ε.

SoCG 2022



60:8 Nearly-Doubling Spaces of Persistence Diagrams

In other words, distinct points of S map to points of distance at least λ − 2ε > 0. It follows
that f is a bijection and S′ is a (λ − 2ε)-packing. The distortion bound on R implies that

diam(S′) = sup
a,b∈S

d′(f(a), f(b))

≤ sup
a,b∈S

d(a, b) + 2ε

= diam(S) + 2ε

≤ 2r + 2ε.

So, the spread ∆′ of S′ is at most 2r+2ε
λ−2ε . Using the fact that αε = λ < r, we get the following

bound on ∆′ in terms of the spread ∆ of S.

∆′ ≤ 2r + 2ε

λ − 2ε
=

2r + 2λ
α

α−2
α λ

<
2rα + 2r

(α − 2)λ ≤ α + 1
α − 2∆.

We then use the fact that f is bijection and apply Lemma 4, to get

|S| = |S′| ≤
((

2α + 2
α − 2

)
∆

)d

. ◀

The nearly-doubling packing lemma explains why algorithms and data structures defined
for doubling metrics work for nearly-doubling metrics down to some scale. We give a specific
example and analysis in the following section.

6 Clarkson’s Algorithm in Nearly-Doubling Spaces

The main theme of this paper is that although some metric spaces are high-dimensional, they
are Gromov-Hausdorff close to low-dimensional metrics. We showed this is true for a wide
class of compact quotient metrics in Section 4 and will extend these results to the bottleneck
space of bounded persistence diagrams in Section 9. Before we tackle those problems, we will
show that being close to a low-dimensional metric has some benefit. In particular, there are
basic algorithms for doubling metrics that will also be efficient in nearly-doubling metrics.

In this section we analyze the performance of an algorithm for constructing a λ-net in a
nearly-doubling metric space. The main result will be that as long as λ ≥ 3ε, the running
time can be bounded in terms of the dimension of an ε-close metric.

The algorithm we will consider for computing the net is sometimes called Clarkson’s
Algorithm. It is a variation of an algorithm originally due to Clarkson [6] with some
simplifications due to Har-Peled and Mendel [10] and Sheehy [19]. The idea is to produce a
net by greedy sampling (also known as farthest point sampling or Gonzalez ordering). Any
point may be selected first and each subsequent point maximizes the distance to the points
selected so far, stopping when the distance is less than the target scale λ. An open source
Python implementation is available [18]. Given a finite subspace P of a doubling metric
space X with cardinality n, the algorithm computes a net of P in time O

(
n log diam(P )

λ

)
.

The big-O hides terms that are exponential in the dimension, but if the dimension is too
high, the simpler upper bound of O(n2) applies. So, for inputs with polynomial spread in
doubling metrics, the running time is O(n log n). Thus, our goal is to show that similar
guarantees hold in nearly-doubling metrics.

The algorithm follows an incremental construction of the greedy sampling. The points
in the net will be numbered p0, p1, . . .. The first point p0 is chosen arbitrarily. Let Pi :=
{p0, . . . , pi−1} be the ith prefix, and λi := d(pi, Pi) be the insertion radius of pi. For every
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point p ∈ Pi the algorithm maintains a list of q ∈ P\Pi that are the reverse nearest neighbors
of p. Essentially, this is the Voronoi cell of p. A neighbor graph is defined on the Voronoi
cells that is guaranteed to have an edge (pi, pj) if adding a point in the Voronoi cell of pi

can affect the Voronoi cell of pj . At each step i the algorithm has the points of Pi in a max
heap with the key of a point pa given by the distance from pa to the farthest point in its
Voronoi cell. The algorithm simply pops a point pa from the heap, and adds the farthest
point pi to the net. The Voronoi cells and the neighbor graph are updated. The neighbor
graph stores exactly the cells that could change so one only needs to check the Voronoi cells
of the neighbors of pa. New edges in the neighbor graph incident to pi can be found among
the 2-hop neighbors (i.e., neighbors of neighbors) of pa. A key insight to make the algorithm
efficient is to keep some extra edges (pa, pb) in the graph as long as d(pa, pb) ≤ 3λi. Clarkson
showed that the desired neighbors will all satisfy such a condition.

▶ Theorem 8. Let ε and λ be such that λ ≥ 3ε. If X is ε-close to a d-dimensional metric
space, then Clarkson’s algorithm computes a λ-net of X in 2O(d)n log2(n diam(X)

λ ) time.

Proof. There are three aspects of the algorithm that must be analyzed: the update to the
neighbor graph, the heap operations, and the update to the Voronoi cells. In the ith iteration,
the points Pi form a λi-net. So, Lemma 7 and the condition that d(pa, pb) ≤ 3λi for neighbors
pb of pa imply that the degree of pa is 2O(d). This means that updating the neighbor graph
takes constant time per point. It also means that the number of keys to update in the heap
is constant per iteration. So, the heap operations take 2O(d)n log2 n time in the worst case.

To analyze the number of distance computations performed when updating the Voronoi
cells, we apply an analysis similar to that used by Har-Peled and Mendel [10]. For each point
x ∈ P , we want to count how many times we compute the distance from q to the newly
inserted point pi (to see if it should change Voronoi cells). In such cases, we say pi touches x.

Let x ∈ Vor(pk) be touched by newly inserted point pi ∈ Vor(pj).

d(x, pi) ≤ d(x, pk) + d(pk, pi)
≤ d(x, pk) + d(pk, pj) + d(pj , pi)
≤ λi + 3λi + λi = 5λi.

For an integer m, define the annulus Am = {pi | 2m ≤ λi < 2m+1 and pi touches x}.
If pi ∈ Am then d(x, pi) ≤ 5λi ≤ 5 · 2m+1. So Am ⊂ B(x, 5 · 2m+1). Moreover Am is
2m-separated. Therefore, by Lemma 7, |Am| ≤ 2O(d). Thus, x is touched at most a constant
number of times in each annulus. The algorithm stops as soon as λi is smaller than λ, so,
the number of nonempty annuli that can contain x is at most log2

diam(P )
λ . It follows that

the total work of updating the Voronoi cells takes 2O(d)n log2
diam(P )

λ time.
Combining the running time of the graph update, the heap operations and the cell

updates, we get a total running time of 2O(d)n log2

(
n diam(P )

λ

)
. ◀

7 Bottleneck Metrics

If the doubling dimension of X is d, then a d-dimensional k-point diagram is a set of k

elements of X. Let X(k) be the space of k-point diagrams in X with the bottleneck metric.

▶ Theorem 9. If X is a d-dimensional metric space, then for all integers k ≥ 1, we have
dim(X(k)) ≤ 4kd.

SoCG 2022
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Proof. Let D ∈ X(k) and positive r ∈ R be chosen arbitrarily. It will suffice to construct an
r/2-sample of B(D, r) of size 22kd. For each point pi ∈ D, there is an r/2-sample {xi,j}j∈[22d]
of B(pi, r) in X. For j : [k] → [22d], let

Cj := {xi,j(i) | i ∈ [k]}.

Assume all diagrams A = {ai}i∈[k] are indexed so the bottleneck matching with D has ai

matched to pi. This means that each ai ∈ A is in B(pi, r). If j(i) is the index of the nearest
point in the sample of B(pi, r), then there is a matching A → Cj with bottleneck at most
r/2. So, the set C = {Cj | j : [k] → [22d]} is an r/2-sample of B(D, r). Clearly, |C| = 22kd,
so the dimension of X(k) is at most 2 log2(|C|) = 4kd. ◀

If the bottleneck space is over a quotient metric, then Lemma 5 and Theorem 9 together
yield the following corollary.

▶ Corollary 10. Let X/Y be a quotient metric induced by a finite subspace Y over X. Then,
dim(X/Y

(k)) ≤ 4k(d + log2 |Y |).

For many metric spaces such as ℓp-spaces, maximal sets with a fixed diameter are metric
balls. In such metrics, or if the doubling dimension is defined in terms of metric balls (as
opposed to general covers), there is no need for the factor of 4 in the dimension for the
preceding two results. In particular this holds in the persistence plane.

For bottleneck spaces defined over nearly doubling metrics, it is useful to have the
following theorem showing that the mapping from metric spaces to bottleneck spaces is
Lipschitz.

▶ Theorem 11. If X and Y are compact metric spaces, then for all integers k ≥ 1,

dGH(X(k), Y (k)) ≤ dGH(X, Y ).

Proof. Let R be a minimum distortion correspondence between X and Y . Let 2ε be the
distortion of R. Let [k] = {0, . . . k − 1}. Let R(k) denote the correspondence between X(k)

and Y (k) defined as

R(k) = {({ai}i∈[k], {bi}i∈[k]) | ∃ bijection m : [k] → [k] s.t. ∀i, (ai, bm(i)) ∈ R}.

To show that dGH(X(k), Y (k)) ≤ ε, it is sufficient to bound the distortion of R(k).
Let (A, B) and (A′, B′) be arbitrary pairs in the R(k), where A = {ai}i∈[k], A′ = {a′

i}i∈[k],
B = {bi}i∈[k], and B′ = {b′

i}i∈[k]. Without loss of generality, we may assume they are indexed
so that for all j, we have (aj , bj) ∈ R and (a′

j , b′
j) ∈ R. Let η : [k] → [k] be the permutation

of indices that gives the bottleneck matching between A and A′, i.e.,

dB(A, A′) = max
i∈[k]

dX(ai, a′
η(i)).

It follows that

dB(B, B′) ≤ max
j∈[k]

dY (bj , b′
η(j))

≤ max
j∈[k]

(dX(aj , a′
η(j)) + 2ε)

= dB(A, A′) + 2ε.

Symmetrically, we have dB(A, A′) ≤ dB(B, B′) + 2ε and thus, distort(R(k)) ≤ 2ε =
distort(R). To conclude, we observe that

dGH(X(k), Y (k)) ≤ 1
2distort(R(k)) ≤ 1

2distort(R) = dGH(X, Y ). ◀
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Figure 2 The image on the left shows a persistence diagram for points sampled on a sphere. The
image on the right shows a sketch of that persistence diagram with first 14 points. The number to
the right of each point shows its multiplicity in the sketch.

8 Bottleneck Spaces with Multiplicity

A k-point diagram D with multiplicity is a set D ⊆ X of cardinality k and a function
mD : D → Z+. The total multiplicity of D is mD =

∑
p∈D mD(p). In this section, we

consider the space X(k,N) of k-point diagrams with total multiplicity N . This may be
viewed as a subset of X(N), consisting of those diagrams with at most k distinct points. In
Theorem 12, we show that X(k,N) has a dimension that depends only logarithmically on N .

The motivation for studying such diagrams with multiplicity again comes from persistence
diagrams. It often happens that points in a persistence diagram have multiplicity. Recently, it
was shown that actively seeking such multiplicity can lead to efficient sketches of persistence
diagrams [17].

A simple sketching algorithm is to run Clarkson’s Algorithm (see Section 6) on a persistence
diagram starting with the diagonal point until k points have been added. The algorithm
maintains the Voronoi cells of the points in the net and therefore one simply sets the
multiplicity of each point to be the number of points in its Voronoi cell. The result is a
k-point sketch, Dk, of a diagram D. It is then straightforward to show that dB(D, Dk) is at
most dH(D, Dk) [17]. The advantage of the sketch is that it is a guaranteed approximation
and can be represented in much less size. In some cases (i.e., for k = O(log n)) it is
asymptotically faster to compute the bottleneck distance between sketches than the full
diagrams. There is nothing special about persistence diagrams in this algorithm. An example
of a sketch is shown in Figure 2.

If D ∈ X(N), then Dk ∈ X(k,N). Theorem 9 gives a bound of 4Nd on the dimension of
X(N). However, as we show in the theorem below, the sketch will live in a lower dimensional
space.

▶ Theorem 12. Let X be a d-dimensional metric space. If k and N are positive integers
such that k ≤ N , then dim(X(k,N)) ≤ min{4Nd, 2k(2d + log2(2Nk))}

Proof. Let C ∈ X(k,N) and r ∈ R be with r > 0 be chosen arbitrarily. We will construct
an r/2-cover of B(C, r) in X(k,N) by constructing an r/2-sample as follows. For each p ∈ C

there exists an r/2-sample Up of B(p, r) of size at most 22d. This means that if d(x, p) ≤ r,
then for some ui ∈ Up, we have d(x, ui) ≤ r/2.
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Let U = ∪p∈CUp. Because |C| = k, we know that |U| ≤ 22dk. Let S ⊆ X(k,N) be defined
as

S := {D | D ⊂ U , |D| ≤ k, mD = N} .

For S to be an r/2-sample of B(C, r) we will show that for all E ∈ B(C, r) there exists
D ∈ S such that dB(D, E) ≤ r/2. Let E = (E, mE) be any diagram in B(C, r). For
every q ∈ E, there exists p ∈ C such that d(p, q) ≤ r. So, there exists q′ ∈ Up such that
d(q, ui) ≤ r/2 for some ui ∈ Up.

Consider a diagram D = (D, mD) where D = {q′ | q ∈ E} and mD(q′) = mE(q) for all
q′ ∈ D. By construction D ∈ S. The bottleneck distance is bounded as follows

dB(D, E) ≤ max
q∈E

d(q, q′) ≤ r/2.

It follows that S is an r/2-sample.
We bound the size of S as follows. Because |U| ≤ 22dk, there are at most

(22dk
k

)
≤ kk22kd

different choices of D for a diagram in S. The number of ways to distribute multiplicity N

over the k points of D is
(

N+k−1
k−1

)
≤ (2N)k, because N ≥ k. It then follows that

|S| ≤ kk22kd(2N)k = (2Nk22d)k.

So, the doubling dimension is at most

2 log2(|S|) ≤ 2 log2(2Nk22d)k = 2k(2d + log2(2Nk)).

On the other hand, treating the diagram as a collection of N points without multiplicity
and applying the bounds for diagrams without multiplicity (Theorem 9) yields a dimension
at most 4Nd. Combining these two upper bounds on the dimension completes the proof. ◀

9 The Space of Bounded Persistence Diagrams

From the preceding two sections we get an approximation of single-class quotient spaces
and a bound on the doubling dimension of finite point bottleneck spaces respectively. These
results come together in the space of bounded persistence diagrams to form a nearly low
dimensional subspace of persistence diagrams.

The persistence plane is denoted by P = (R2, ℓ∞)/{(x, x) | x ∈ R}. Let P0 denote the
bounded persistence plane obtained by restricting P to [0, 1] × [0, 1]. Then, P(N)

0 is the
bottleneck space of N -point bounded persistence diagrams.

The key to finding low-dimensional spaces near P(N)
0 is to first find a low-dimensional

space near the persistence plane. Theorem 6 gives a recipe for doing so. There is an ε-sample
of the diagonal of the bounded persistence plane of size

⌈ 1
2ε

⌉
. So, one can consider the plane

modulo the ε-sample rather than modulo the whole diagonal. The resulting metric space is
denoted Pε. It is a special case of the construction in Theorem 6, and thus the following
lemma is immediate.

▶ Lemma 13. For all ε > 0, dim(Pε) ≤ 2 + log2
⌈ 1

2ε

⌉
and dGH(P0, Pε) ≤ ε.

▶ Theorem 14. The bottleneck space of N -point bounded persistence diagrams, P(N)
0 is

ε-close to a space of dimension at most 4N(2 + log2
⌈ 1

2ε

⌉
).
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Proof. By Theorem 12 and Lemma 13,

dim(P(N)
ε ) ≤ 4N dim(Pε) ≤ 4N(2 + log2

⌈
1
2ε

⌉
).

Moreover, Theorem 11 implies that

dGH(P(N)
0 , P(N)

ε ) ≤ dGH(P0, Pε) ≤ ε. ◀

Thus, the space of bounded N -point persistence diagrams is nearly low-dimensional. We
can further lower the dimension of the space using sketching. Having fewer points with
multiplicity decreases the dimension.

▶ Lemma 15. For all positive integers N, k such that N ≥ k,

dGH(P(N)
0 , P(k,N)

0 ) ≤
√

1
2k

.

Proof. Given an N -point diagram D, the greedy sketching algorithm produces a k-point
diagram Dk with mass N . The bottleneck distance is well-defined for all persistence diagrams,
so it will suffice to bound the Hausdorff distance. As P(k,N)

0 is a subspace of P(N)
0 , the

Hausdorff distance will be the maximum of dB(D, Dk) over all bounded N -point persistence
diagrams. The greedy sketch produces for each k, an εk-net of D with multiplicities so
that dB(D, Dk) = εk. The maximum size of an εk-net in P0 restricted to the region above
the diagonal is 1

2ε2
k

. It follows that k ≤ 1
2ε2

k

and therefore, εk ≤
√

1
2k . So, for all bounded

N -point persistence diagrams D, we have dB(D, Dk) ≤
√

1
2k and so the Gromov-Hausdorff

distance bound follows. ◀

We can now combine the previous results to prove the following theorem.

▶ Theorem 16. The space P(N)
0 of bounded N -point persistence diagrams is (ε +

√
1

2k )-close
to a metric of dimension at most 2k(4 + 2 log2

⌈ 1
2ε

⌉
+ log2(2Nk)).

Proof. First, the triangle inequality, Lemma 15, and Theorem 6 that

dGH(P(N)
0 , P(k,N)

ε ) ≤ dGH(P(N)
0 , P(k,N)

0 ) + dGH(P(k,N)
0 , P(k,N)

ε ) ≤
√

1
2k

+ ε.

Then, Theorem 12 and Lemma 13 implies

dim(P(k,N)
ε ) ≤ 2k(2 dim(Pε) + log2(2Nk))

≤ 2k(2 dim(Pε) + log2(2Nk))

≤ 2k(4 + 2 log2

⌈
1
2ε

⌉
+ log2(2Nk)). ◀

10 Conclusion

In this paper, we analyze several generalizations of metric spaces that arise naturally in
topological data analysis, with the goal of bounding their dimension. Although the most
significant of these, the bottleneck distance for persistence diagrams is infinite-dimensional,
we show that in an important sense, it can behave like a low-dimensional space.
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The idea of analyzing the running time of an algorithm in terms of the dimension of
a nearby metric leads to many natural questions. For example, it should be possible to
build linear-size spanners with ε (additive) slack if the input is ε-close to a doubling metric
by a direct application of the ideas from Section 6. It is interesting to ask what other
metric constructions that are known to be efficient in doubling metrics are also efficient in
nearly-doubling metrics.

Although our general study of bottleneck spaces over quotient metrics was primarily
motivated by the special case of persistence diagrams, this is not the only example. Other
methods in topological data analysis produce different quotient metrics of the type studied
in this paper, for example in the work of Carrière and Oudot on Mapper [4]. It remains
to find more such examples. It also remains to consider more general quotient metrics, i.e.,
those defined by an arbitrary equivalence relation rather than just a subset.

Lastly, the results of this paper imply that in many cases, one could hope that metric
analysis on collections of persistence diagrams is a reasonable thing to do. Not only will
the entropy of the collection be bounded, many standard algorithms designed for doubling
metrics should work well without change.
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